No Arabic abstract
A state in quantum mechanics is defined as a positive operator of norm 1. For finite systems, this may be thought of as a positive matrix of trace 1. This constraint of positivity imposes severe restrictions on the allowed evolution of such a state. From the mathematical viewpoint, we describe the two forms of standard dynamical equations - global (Kraus) and local (Lindblad) - and show how each of these gives rise to a semi-group description of the evolution. We then look at specific examples from atomic systems, involving 3-level systems for simplicity, and show how these mathematical constraints give rise to non-intuitive physical phenomena, reminiscent of Bohm-Aharonov effects. In particular, we show that for a multi-level atomic system it is generally impossible to isolate the levels, and this leads to observable effects on the population relaxation and decoherence.
We discuss the Aharonov-Bohm effect in the presence of hidden photons kinetically mixed with the ordinary electromagnetic photons. The hidden photon field causes a slight phase shift in the observable interference pattern. It is then shown how the limited sensitivity of this experiment can be largely improved. The key observation is that the hidden photon field causes a leakage of the ordinary magnetic field into the supposedly field-free region. The direct measurement of this magnetic field can provide a sensitive experiment with a good discovery potential, particularly below the $sim$ meV mass range for hidden photons.
We study the time-dependent transport of charge and spin through a ring-shaped region sequentially coupled to a weakly interacting quantum dot in the presence of an Aharonov-Bohm flux and spin-orbit interaction. The time-dependent modulation of the spin-orbit interaction, or of the corresponding Aharonov-Casher flux, together with the modulation of the dot-level induces an electrically pumped spin current even in absence of a charge current. The results beyond the adiabatic regime show that an additional rectification current proportional to cos(phi), being phi the relative phase between the time varying parameters, is generated. We discuss the relevance of such term in connection with recent experiments on out-of-equilibrium quantum dots.
We show that the Aharonov-Bohm effect finds a natural description in the setting of QFT on curved spacetimes in terms of superselection sectors of local observables. The extension of the analysis of superselection sectors from Minkowski spacetime to an arbitrary globally hyperbolic spacetime unveils the presence of a new quantum number labeling charged superselection sectors. In the present paper we show that this topological quantum number amounts to the presence of a background flat potential which rules the behaviour of charges when transported along paths as in the Aharonov-Bohm effect. To confirm these abstract results we quantize the Dirac field in presence of a background flat potential and show that the Aharonov-Bohm phase gives an irreducible representation of the fundamental group of the spacetime labeling the charged sectors of the Dirac field. We also show that non-Abelian generalizations of this effect are possible only on space-times with a non-Abelian fundamental group.
In order to determine the origin of discontinuities which arise when the semiclassical propagator is employed to describe an infinitely long and infinitesimally thin solenoid carrying magnetic flux, we give a systematic derivation of the semiclassical limit of the motion of an otherwise free charged particle. Our limit establishes the connection of the quantum mechanical canonical angular momentum to its classical counterpart. Moreover, we show how a picture of Aharonov-Bohm interference of two half-waves acquiring Diracs magnetic phase when passing on either side of the solenoid emerges from the quantum propagator, and that the typical scale of the resulting interference pattern is fully determined by the ratio of the angular part of Hamiltons principal function to Plancks constant. The semiclassical propagator is recovered in the limit when this ratio diverges. We discuss the relation of our results to the whirling-wave representation of the exact propagator.
The Aharanov-Bohm (AB) effect, which predicts that a magnetic field strongly influences the wave function of an electrically charged particle, is investigated in a three site system in terms of the quantum control by an additional dephasing source. The AB effect leads to a non-monotonic dependence of the steady-state current on the gauge phase associated with the molecular ring. This dependence is sensitive to site energy, temperature, and dephasing, and can be explained using the concept of the dark state. Although the phase effect vanishes in the steady-state current for strong dephasing, the phase dependence remains visible in an associated waiting-time distribution, especially at short times. Interestingly, the phase rigidity (i.e., the symmetry of the AB phase) observed in the steady-state current is now broken in the waiting-time statistics, which can be explained by the interference between transfer pathways.