Simultaneous measurement of multiple qubits stored in hyperfine levels of trapped 111Cd+ ions is realized with an intensified charge-coupled device (CCD) imager. A general theory of fluorescence detection for hyperfine qubits is presented and applied to experimental data. The use of an imager for photon detection allows for multiple qubit state measurement with detection fidelities of greater than 98%. Improvements in readout speed and fidelity are discussed in the context of scalable quantum computation architectures.