The role of geometry on dispersive forces is investigated by calculating the energy between different spheroidal particles and planar surfaces, both with arbitrary dielectric properties. The energy is obtained in the non-retarded limit using a spectral representation formalism and calculating the interaction between the surface plasmons of the two macroscopic bodies. The energy is a power-law function of the separation of the bodies, where the exponent value depends on the geometrical parameters of the system, like the separation distance between bodies, and the aspect ratio among minor and major axes of the spheroid.