No Arabic abstract
We consider teleportation of an arbitrary spin-1/2 target quantum state along the ground state of a quantum spin chain. We present a decomposition of the Hilbert space of the many body quantum state into 4 vector spaces. Within each of these subspaces, it is possible to take any superposition of states, and use projective measurements to perform unit fidelity teleportation. Any such superposition is necessarily a spin liquid state. We also show that all total spin-0 quantum states belong in the same space, so that it is possible to perform unit fidelity teleportation over any one-dimensional spin-0 many body quantum state. We generalise to $n$-Bell states, and present some general bounds on fidelity of teleportation given a general state of a quantum spin chain.
Isotropic XX models of one-dimensional spin-1/2 chains are investigated with the aim to elucidate the formal structure and the physical properties that allow these systems to act as channels for long-distance, high-fidelity quantum teleportation. We introduce two types of models: I) open, dimerized XX chains, and II) open XX chains with small end bonds. For both models we obtain the exact expressions for the end-to-end correlations and the scaling of the energy gap with the length of the chain. We determine the end-to-end concurrence and show that model I) supports true long-distance entanglement at zero temperature, while model II) supports {it ``quasi long-distance} entanglement that slowly falls off with the size of the chain. Due to the different scalings of the gaps, respectively exponential for model I) and algebraic in model II), we demonstrate that the latter allows for efficient qubit teleportation with high fidelity in sufficiently long chains even at moderately low temperatures.
We explore the capability of spin-1/2 chains to act as quantum channels for both teleportation and transfer of qubits. Exploiting the emergence of long-distance entanglement in low-dimensional systems [Phys. Rev. Lett. 96, 247206 (2006)], here we show how to obtain high communication fidelities between distant parties. An investigation of protocols of teleportation and state transfer is presented, in the realistic situation where temperature is included. Basing our setup on antiferromagnetic rotationally invariant systems, both protocols are represented by pure depolarizing channels. We propose a scheme where channel fidelity close to one can be achieved on very long chains at moderately small temperature.
We introduce a quantum teleportation scheme that can transfer a macroscopic spin coherent state between two locations. In the scheme a large number of copies of a qubit, such as realized in a coherent two-component Bose-Einstein condensate, is teleported onto a distant macroscopic spin coherent state using only elementary operations and measurements. We analyze the error of the protocol with the number of particles N in the spin coherent state under decoherence and find that it scales favorably with N.
Blind quantum computation (BQC) allows that a client who has limited quantum abilities can delegate quantum computation to a server who has advanced quantum technologies but learns nothing about the clients private information. For example, measurement-based model can guarantee privacy of clients inputs, quantum algorithms and outputs. However, it still remains a challenge to directly encrypt quantum algorithms in circuits model. To solve the problem, we propose GTUBQC, the first gate teleportation-based universal BQC protocol. Specifically, in this paper we consider a scenario where there are a trusted center responsible for preparing initial states, a client with the ability to perform X, Z, and two non-communicating servers conducting UBQC (universal BQC) and Bell measurements. GTUBQC ensures that all quantum outputs are at the clients side and the client only needs to detect whether servers honestly return correct measurement outcomes or not. In particular, GTUBQC can hide the universal quantum gates by encrypting the rotation angles, because arbitrary unitary operation can be decomposed into a combination of arbitrary rotation operators. Also, GTUBQC protocol can facilitate realizing UBQC in circuits, since GTUBQC uses one-time-pad to guarantee blindness. We prove the blindness and correctness of GTUBQC, and apply our approach to other types of computational tasks, such as quantum Fourier transform.
A parametric amplifier is in essence a linear four-port device, which couples and linearly mixes two inputs before amplifying and sending them to two output ports. Here, we show that for quadrature-phase amplitudes, a parametric amplifier can replace beam splitters to play the role of mixer. We apply this idea to a continuous-variable quantum state teleportation scheme in which a parametric amplifier replaces a beam splitter in Bell measurement. We show that this scheme is loss-tolerant in the Bell measurement process and thus demonstrate the advantage of PA over BS in the applications in quantum measurement.