Do you want to publish a course? Click here

Multipartite Asymmetric Quantum Cloning

99   0   0.0 ( 0 )
 Added by Sofyan Iblisdir
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the optimal distribution of quantum information over multipartite systems in asymmetric settings. We introduce cloning transformations that take $N$ identical replicas of a pure state in any dimension as input, and yield a collection of clones with non-identical fidelities. As an example, if the clones are partitioned into a set of $M_A$ clones with fidelity $F^A$ and another set of $M_B$ clones with fidelity $F^B$, the trade-off between these fidelities is analyzed, and particular cases of optimal $N to M_A+M_B$ cloning machines are exhibited. We also present an optimal $1 to 1+1+1$ cloning machine, which is the first known example of a tripartite fully asymmetric cloner. Finally, it is shown how these cloning machines can be optically realized.

rate research

Read More

108 - S. Iblisdir , A. Acin , N. Gisin 2005
We study machines that take N identical replicas of a pure qudit state as input and output a set of M_A clones of a given fidelity and another set of $M_B$ clones of another fidelity. The trade-off between these two fidelities is investigated, and numerous examples of optimal N -> M_A+M_B cloning machines are exhibited using a generic method. A generalisation to more than two sets of clones is also discussed. Finally, an optical implementation of some such machines is proposed. This paper is an extended version of [xxx.arxiv.org/abs/quant-ph/0411179].
The future of quantum communication relies on quantum networks composed by observers sharing multipartite quantum states. The certification of multipartite entanglement will be crucial to the usefulness of these networks. In many real situations it is natural to assume that some observers are more trusted than others in the sense that they have more knowledge of their measurement apparatuses. Here we propose a general method to certify all kinds of multipartite entanglement in this asymmetric scenario and experimentally demonstrate it in an optical experiment. Our results, which can be seen as a definition of genuine multipartite quantum steering, give a method to detect entanglement in a scenario in between the standard entanglement and fully device-independent scenarios, and provide a basis for semi-device-independent cryptographic applications in quantum networks.
Quantum no-cloning, the impossibility of perfectly cloning an arbitrary unknown quantum state, is one of the most fundamental limitations due to the laws of quantum mechanics, which underpin the physical security of quantum key distribution. Quantum physics does allow, however, approximate cloning with either imperfect state fidelity and/or probabilistic success. Whereas approximate quantum cloning of single-particle states has been tested previously, experimental cloning of quantum entanglement -- a highly non-classical correlation -- remained unexplored. Based on a multiphoton linear optics platform, we demonstrate quantum cloning of two photon entangled states for the first time. Remarkably our results show that one maximally entangled photon pair can be broadcast into two entangled pairs, both with state fidelities above 50%. Our results are a key step towards cloning of complex quantum systems, and are likely to provide new insights into quantum entanglement.
We study the dynamical entanglement distribution in a multipartite system. The initial state is a maximally entangled two level atom with a single photon field. Next a sequence of atoms are sent, one at the time, and interact with the field. We show that the which way information initially stored only in the field is now distributed among the parties of the global system. We obtain the corresponding complementarity relations in analytical form. We show that this dynamics may lead to a quantum eraser phenomenon provided that measurements of the probe atoms are performed in a basis which maximizes the visibility. The process may be realized in microwave cavities with present technology.
We introduce a quantum cellular automaton that achieves approximate phase-covariant cloning of qubits. The automaton is optimized for 1-to-2N economical cloning. The use of the automaton for cloning allows us to exploit different foliations for improving the performance with given resources.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا