No Arabic abstract
In this work, we investigate how and to which extent a quantum system can be driven along a prescribed path in Hilbert space by a suitably shaped laser pulse. To calculate the optimal, i.e., the variationally best pulse, a properly defined functional is maximized. This leads to a monotonically convergent algorithm which is computationally not more expensive than the standard optimal-control techniques to push a system, without specifying the path, from a given initial to a given final state. The method is successfully applied to drive the time-dependent density along a given trajectory in real space and to control the time-dependent occupation numbers of a two-level system and of a one-dimensional model for the hydrogen atom.
We investigate simultaneous estimation of multi-parameter quantum estimation with time-dependent Hamiltonians. We analytically obtain the maximal quantum Fisher information matrix for two-parameter in time-dependent three-level systems. The optimal coherent control scheme is proposed to increase the estimation precisions. In a example of a spin-1 particle in a uniformly rotating magnetic field, the optimal coherent Hamiltonians for different parameters can be chosen to be completely same. However, in general, the optimal coherent Hamiltonians for different parameters are incompatibility. In this situation, we suggest a variance method to obtain the optimal coherent Hamiltonian for estimating multiple parameters simultaneously, and obtain the optimal simultaneous estimation precision of two-parameter in a three-level Landau-Zener Hamiltonian.
We apply two recent generalizations of monotonically convergent optimization algorithms to the control of molecular orientation by laser fields. We show how to minimize the control duration by a step-wise optimization and maximize the field-free molecular orientation using state-dependent constraints. We discuss the physical relevance of the different results.
Given a generic time-dependent many-body quantum state, we determine the associated parent Hamiltonian. This procedure may require, in general, interactions of any sort. Enforcing the requirement of a fixed set of engineerable Hamiltonians, we find the optimal Hamiltonian once a set of realistic elementary interactions is defined. We provide three examples of this approach. We first apply the optimization protocol to the ground states of the one-dimensional Ising model and a ferromagnetic $p$-spin model but with time-dependent coefficients. We also consider a time-dependent state that interpolates between a product state and the ground state of a $p$-spin model. We determine the time-dependent optimal parent Hamiltonian for these states and analyze the capability of this Hamiltonian of generating the state evolution. Finally, we discuss the connections of our approach to shortcuts to adiabaticity.
We study the minimum time to implement an arbitrary two-qubit gate in two heteronuclear spins systems. We give a systematic characterization of two-qubit gates based on the invariants of local equivalence. The quantum gates are classified into four classes, and for each class the analytical formula of the minimum time to implement the quantum gates is explicitly presented. For given quantum gates, by calculating the corresponding invariants one easily obtains the classes to which the quantum gates belong. In particular, we analyze the effect of global phases on the minimum time to implement the gate. Our results present complete solutions to the optimal time problem in implementing an arbitrary two-qubit gate in two heteronuclear spins systems. Detailed examples are given to typical two-qubit gates with or without global phases.
We experimentally study the time-optimal construction of arbitrary single-qubit rotations under a single strong driving field of finite amplitude. Using radiation-dressed states of nitrogen vacancy centers in diamond, we realize a strongly-driven two-level system and achieve driving frequencies four times larger than its Larmor frequency. We implement time optimal universal rotations on this system, characterize their performance using quantum process tomography, and demonstrate a dual-axis ac magnetometry sequence with pulses at sub-Larmor time scales. Our results pave the way for applying fast qubit control and high-density pulse schemes in the fields of quantum information processing and quantum metrology.