Unconditional Security of Three State Quantum Key Distribution Protocols


Abstract in English

Quantum key distribution (QKD) protocols are cryptographic techniques with security based only on the laws of quantum mechanics. Two prominent QKD schemes are the BB84 and B92 protocols that use four and two quantum states, respectively. In 2000, Phoenix et al. proposed a new family of three state protocols that offers advantages over the previous schemes. Until now, an error rate threshold for security of the symmetric trine spherical code QKD protocol has only been shown for the trivial intercept/resend eavesdropping strategy. In this paper, we prove the unconditional security of the trine spherical code QKD protocol, demonstrating its security up to a bit error rate of 9.81%. We also discuss on how this proof applies to a version of the trine spherical code QKD protocol where the error rate is evaluated from the number of inconclusive events.

Download