Do you want to publish a course? Click here

Quantum squeezing of optical dissipative structures

127   0   0.0 ( 0 )
 Added by Eugenio Roldan
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that any optical dissipative structure supported by degenerate optical parametric oscillators contains a special transverse mode that is free from quantum fluctuations when measured in a balanced homodyne detection experiment. The phenomenon is not critical as it is independent of the system parameters and, in particular, of the existence of bifurcations. This result is a consequence of the spatial symmetry breaking introduced by the dissipative structure. Effects that could degrade the squeezing level are considered.

rate research

Read More

We present a method for the study of quantum fluctuations of dissipative structures forming in nonlinear optical cavities, which we illustrate in the case of a degenerate, type I optical parametric oscillator. The method consists in (i) taking into account explicitly, through a collective variable description, the drift of the dissipative structure caused by the quantum noise, and (ii) expanding the remaining -internal- fluctuations in the biorthonormal basis associated to the linear operator governing the evolution of fluctuations in the linearized Langevin equations. We obtain general expressions for the squeezing and intensity fluctuations spectra. Then we theoretically study the squeezing properties of a special dissipative structure, namely, the bright cavity soliton. After reviewing our previous result that in the linear approximation there is a perfectly squeezed mode irrespectively of the values of the system parameters, we consider squeezing at the bifurcation points, and the squeezing detection with a plane--wave local oscillator field, taking also into account the effect of the detector size on the level of detectable squeezing.
We study the stationary and nonstationary measurement of a classical force driving a mechanical oscillator coupled to an electromagnetic cavity under two-tone driving. For this purpose, we develop a theoretical framework based on the signal-to-noise ratio to quantify the sensitivity of linear spectral measurements. Then, we consider stationary force sensing and study the necessary conditions to minimise the added force noise. We find that imprecision noise and back-action noise can be arbitrarily suppressed by manipulating the amplitudes of the input coherent fields, however, the force noise power spectral density cannot be reduced below the level of thermal fluctuations. Therefore, we consider a nonstationary protocol that involves non-thermal dissipative state preparation followed by a finite time measurement, which allows one to perform measurements with a signal-to-noise much greater than the maximum possible in a stationary measurement scenario. We analyse two different measurement schemes in the nonstationary transient regime, a back-action evading measurement, which implies modifying the drive asymmetry configuration upon arrival of the force, and a nonstationary measurement that leaves the drive asymmetry configuration unchanged. Conditions for optimal force noise sensitivity are determined, and the corresponding force noise power spectral densities are calculated.
Quantum metrology enables estimation of optical phase shifts with precision beyond the shot-noise limit. One way to exceed this limit is to use squeezed states, where the quantum noise of one observable is reduced at the expense of increased quantum noise for its complementary partner. Because shot-noise limits the phase sensitivity of all classical states, reduced noise in the average value for the observable being measured allows for improved phase sensitivity. However, additional phase sensitivity can be achieved using phase estimation strategies that account for the full distribution of measurement outcomes. Here we experimentally investigate the phase sensitivity of a five-particle optical spin-squeezed state generated by photon subtraction from a parametric downconversion photon source. The Fisher information for all photon-number outcomes shows it is possible to obtain a quantum advantage of 1.58 compared to the shot-noise limit, even though due to experimental imperfection, the average noise for the relevant spin-observable does not achieve sub-shot-noise precision. Our demonstration implies improved performance of spin squeezing for applications to quantum metrology.
We investigate the squeezed regions in the phase plane for non-dissipative dynamical systems controlled by SU(1,1) Lie algebra. We analyze such study for the two SU(1,1) generalized coherent states, namely, the Perelomov coherent state (PCS) and the Barut-Girardello Coherent state (BGCS).
While a propagating state of light can be generated with arbitrary squeezing by pumping a parametric resonator, the intra-resonator state is limited to 3 dB of squeezing. Here, we implement a reservoir engineering method to surpass this limit using superconducting circuits. Two-tone pumping of a three-wave-mixing element implements an effective coupling to a squeezed bath which stabilizes a squeezed state inside the resonator. Using an ancillary superconducting qubit as a probe allows us to perform a direct Wigner tomography of the intra-resonator state. The raw measurement provides a lower bound on the squeezing at about $6.7 pm 0.2$ dB below the zero-point level. Further, we show how to correct for resonator evolution during the Wigner tomography and obtain a squeezing as high as $8.2 pm 0.8$ dB. Moreover, this level of squeezing is achieved with a purity of $-0.4 pm 0.4$ dB.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا