Do you want to publish a course? Click here

Quantum Metrology: Detection of weak forces using Schrodinger Cat resources

192   0   0.0 ( 0 )
 Added by Bill Munro
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the utility of non classical states of simple harmonic oscillators (a superposition of coherent states) for sensitive force detection. We find that like squeezed states a superposition of coherent states allows the detection of displacement measurements at the Heisenberg limit. Entangling many superpositions of coherent states offers a significant advantage over a single mode superposition states with the same mean photon number.



rate research

Read More

Quantum metrology offers a quadratic advantage over classical approaches to parameter estimation problems by utilizing entanglement and nonclassicality. However, the hurdle of actually implementing the necessary quantum probe states and measurements, which vary drastically for different metrological scenarios, is usually not taken into account. We show that for a wide range of tasks in metrology, 2D cluster states (a particular family of states useful for measurement-based quantum computation) can serve as flexible resources that allow one to efficiently prepare any required state for sensing, and perform appropriate (entangled) measurements using only single qubit operations. Crucially, the overhead in the number of qubits is less than quadratic, thus preserving the quantum scaling advantage. This is ensured by using a compression to a logarithmically sized space that contains all relevant information for sensing. We specifically demonstrate how our method can be used to obtain optimal scaling for phase and frequency estimation in local estimation problems, as well as for the Bayesian equivalents with Gaussian priors of varying widths. Furthermore, we show that in the paradigmatic case of local phase estimation 1D cluster states are sufficient for optimal state preparation and measurement.
Favored schemes for trapped-ion quantum logic gates use bichromatic laser fields to couple internal qubit states with external motion through a spin-dependent force. We introduce a new degree of freedom in this coupling that reduces its sensitivity to phase decoherence. We demonstrate bichromatic spin-dependent forces on a single trapped $^{111}$Cd$^+$ ion, and show that phase coherence of the resulting Schr{o}dinger-cat states of motion depends critically upon the spectral arrangement of the optical fields. This applies directly to the operation of entangling gates on multiple ions.
The superposition principle is one of the main tenets of quantum mechanics. Despite its counter-intuitiveness, it has been experimentally verified using electrons, photons, atoms, and molecules. However, a similar experimental demonstration using a nano or a micro particle is non-existent. Here in this Letter, exploiting macroscopic quantum coherence and quantum tunneling, we propose an experiment using levitated magnetic nanoparticle to demonstrate such an effect. It is shown that the spatial separation between the delocalized wavepackets of a $20~$nm ferrimagnetic yttrium iron garnet (YIG) nanoparticle can be as large as $5~$$mu$m. We argue that this large spatial separation can be used to test different modifications such as collapse models to the standard quantum mechanics. Furthermore, we show that the spatial superposition of a core-shell structure, a YIG core and a non-magnetic silica shell, can be used to probe quantum gravity.
We propose a spectrometric method to detect a classical weak force acting upon the moving end mirror in a cavity optomechanical system. The force changes the equilibrium position of the end mirror, and thus the resonance frequency of the cavity field depends on the force to be detected. As a result, the magnitude of the force can be inferred by analyzing the single-photon emission and scattering spectra of the optomechanical cavity. Since the emission and scattering processes are much faster than the characteristic mechanical dissipation, the influence of the mechanical thermal noise is negligible in this spectrometric detection scheme. We also extent this spectrometric method to detect a monochromatic oscillating force by utilizing an optomechanical coupling modulated at the same frequency as the force.
Weak value amplification (WVA) is a metrological protocol that amplifies ultra-small physical effects. However, the amplified outcomes necessarily occur with highly suppressed probabilities, leading to the extensive debate on whether the overall measurement precision is improved in comparison to that of conventional measurement (CM). Here, we experimentally demonstrate the unambiguous advantages of WVA that overcome practical limitations including noise and saturation of photo-detection and maintain a shot-noise-scaling precision for a large range of input light intensity well beyond the dynamic range of the photodetector. The precision achieved by WVA is six times higher than that of CM in our setup. Our results clear the way for the widespread use of WVA in applications involving the measurement of small signals including precision metrology and commercial sensors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا