No Arabic abstract
In this work, we describe the process of teleportation between Alice in an inertial frame, and Rob who is in uniform acceleration with respect to Alice. The fidelity of the teleportation is reduced due to Davies-Unruh radiation in Robs frame. In so far as teleportation is a measure of entanglement, our results suggest that quantum entanglement is degraded in non-inertial frames. We discuss this reduction in fidelity for both bosonic and fermionic resources.
We analyze the entanglement between two modes of a free Dirac field as seen by two relatively accelerated parties. The entanglement is degraded by the Unruh effect and asymptotically reaches a non-vanishing minimum value in the infinite acceleration limit. This means that the state always remains entangled to a degree and can be used in quantum information tasks, such as teleportation, between parties in relative uniform acceleration. We analyze our results from the point of view afforded by the phenomenon of entanglement sharing and in terms of recent results in the area of multi-qubit complementarity.
We consider the behaviour of bipartite and tripartite non-locality between fermionic entangled states shared by observers, one of whom uniformly accelerates. We find that while fermionic entanglement persists for arbitrarily large acceleration, the Bell/CHSH inequalities cannot be violated for sufficiently large but finite acceleration. However the Svetlichny inequality, which is a measure of genuine tripartite non-locality, can be violated for any finite value of the acceleration.
In a recent paper (arXiv:1701.04298 [quant-ph]) Torov{s}, Gro{ss}ardt and Bassi claim that the potential necessary to support a composite particle in a gravitational field must necessarily cancel the relativistic coupling between internal and external degrees of freedom. As such a coupling is responsible for the gravitational redshift measured in numerous experiments, the above statement is clearly incorrect. We identify the simple mistake in the paper responsible for the incorrect claim.
It is shown that a disformally coupled theory in which the gravitational sector has the Einstein-Hilbert form is equivalent to a quartic DBI Galileon Lagrangian, possessing non-linear higher derivative interactions, and hence allowing for the Vainshtein effect. This Einstein Frame description considerably simplifies the dynamical equations and highlights the role of the different terms. The study of highly dense, non-relativistic environments within this description unravels the existence of a disformal screening mechanism, while the study of static vacuum configurations reveals the existence of a Vainshtein radius, at which the asymptotic solution breaks down. Disformal couplings to matter also allow the construction of Dark Energy models, which behave differently than conformally coupled ones and introduce new effects on the growth of Large Scale Structure over cosmological scales, on which the scalar force is not screened. We consider a simple Disformally Coupled Dark Matter model in detail, in which standard model particles follow geodesics of the gravitational metric and only Dark Matter is affected by the disformal scalar field. This particular model is not compatible with observations in the linearly perturbed regime. Nonetheless, disformally coupled theories offer enough freedom to construct realistic cosmological scenarios, which can be distinguished from the standard model through characteristic signatures.
We have recently shown that the output field in the Braunstein-Kimble protocol of teleportation is a superposition of two fields: the input one and a field created by Alices measurement and by displacement of the state at Bobs station by using the classical information provided by Alice. We study here the noise added by teleportation and compare its influence in the Gaussian and non-Gaussian settings.