Do you want to publish a course? Click here

Transmission Of Optical Coherent State Qubits

98   0   0.0 ( 0 )
 Added by Scott Glancy
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss the long distance transmission of qubits encoded in optical coherent states. Through absorption these qubits suffer from two main types of errors, the reduction of the amplitude of the coherent states and accidental application of the Pauli Z operator. We show how these errors can be fixed using techniques of teleportation and error correcting codes.



rate research

Read More

We show how entangled qubits can be encoded as entangled coherent states of two-dimensional centre-of-mass vibrational motion for two ions in an ion trap. The entangled qubit state is equivalent to the canonical Bell state, and we introduce a proposal for entanglement transfer from the two vibrational modes to the electronic states of the two ions in order for the Bell state to be detected by resonance fluorescence shelving methods.
We present a way to transfer maximally- or partially-entangled states of n single-photon-state (SPS) qubits onto n coherent-state (CS) qubits, by employing 2n microwave cavities coupled to a superconducting flux qutrit. The two logic states of a SPS qubit here are represented by the vacuum state and the single-photon state of a cavity, while the two logic states of a CS qubit are encoded with two coherent states of a cavity. Because of using only one superconducting qutrit as the coupler, the circuit architecture is significantly simplified. The operation time for the state transfer does not increase with the increasing of the number of qubits. When the dissipation of the system is negligible, the quantum state can be transferred in a deterministic way since no measurement is required. Furthermore, the higher-energy intermediate level of the coupler qutrit is not excited during the entire operation and thus decoherence from the qutrit is greatly suppressed. As a specific example, we numerically demonstrate that the high-fidelity transfer of a Bell state of two SPS qubits onto two CS qubits is achievable within the present-day circuit QED technology. Finally, it is worthy to note that when the dissipation is negligible, entangled states of n CS qubits can be transferred back onto n SPS qubits by performing reverse operations. This proposal is quite general and can be extended to accomplish the same task, by employing a natural or artificial atom to couple 2n microwave or optical cavities.
We discuss several methods to produce superpositions of optical coherent states (also known as cat states). Cat states have remarkable properties that could allow them to be powerful tools for quantum information processing and metrology. A number of proposals for how one can produce cat states have appeared in the literature in recent years. We describe these proposals and present new simulation and analysis of them incorporating practical issues such as photon loss, detector inefficiency, and limited strength of nonlinear interactions. We also examine how each would perform in a realistic experiment.
83 - M. Saffman , T. G. Walker 2004
We discuss the use of Rydberg blockade techniques for entanglement of 1 atom qubits with collective $N$ atom qubits. We show how the entanglement can be used to achieve fast readout and transmission of the state of single atom qubits without the use of optical cavities.
We propose two experimental schemes for producing coherent-state superpositions which approximate different nonclassical states conditionally in traveling optical fields. Although these setups are constructed of a small number of linear optical elements and homodyne measurements, they can be used to generate various photon number superpositions in which the number of constituent states can be higher than the number of measurements in the schemes. We determine numerically the parameters to achieve maximal fidelity of the preparation for a large variety of nonclassical states, such as amplitude squeezed states, squeezed number states, binomial states and various photon number superpositions. The proposed setups can generate these states with high fidelities and with success probabilities that can be promising for practical applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا