No Arabic abstract
We extend the definition of generalized parity $P$, charge-conjugation $C$ and time-reversal $T$ operators to nondiagonalizable pseudo-Hermitian Hamiltonians, and we use these generalized operators to describe the full set of symmetries of a pseudo-Hermitian Hamiltonian according to a fourfold classification. In particular we show that $TP$ and $CTP$ are the generators of the antiunitary symmetries; moreover, a necessary and sufficient condition is provided for a pseudo-Hermitian Hamiltonian $H$ to admit a $P$-reflecting symmetry which generates the $P$-pseudounitary and the $P$-pseudoantiunitary symmetries. Finally, a physical example is considered and some hints on the $P$-unitary evolution of a physical system are also given.
We consider a class of (possibly nondiagonalizable) pseudo-Hermitian operators with discrete spectrum, showing that in no case (unless they are diagonalizable and have a real spectrum) they are Hermitian with respect to a semidefinite inner product, and that the pseudo-Hermiticity property is equivalent to the existence of an antilinear involutory symmetry. Moreover, we show that a typical degeneracy of the real eigenvalues (which reduces to the well known Kramers degeneracy in the Hermitian case) occurs whenever a fermionic (possibly nondiagonalizable) pseudo-Hermitian Hamiltonian admits an antilinear symmetry like the time-reversal operator $T$. Some consequences and applications are briefly discussed.
We have briefly analyzed the existence of the pseudofermionic structure of multilevel pseudo-Hermitian systems with odd time-reversal and higher order involutive symmetries. We have shown that 2N-level Hamiltonians with N-order eigenvalue degeneracy can be represented in the oscillator-like form in terms of pseudofermionic creation and annihilation operators for both real and complex eigenvalues. The example of most general four-level traceless Hamiltonian with odd time-reversal symmetry, which is an extension of the SO(5) Hermitian Hamiltonian, is considered in greater and explicit detail.
We characterize the conditions under which a translationally invariant matrix product state (MPS) is invariant under local transformations. This allows us to relate the symmetry group of a given state to the symmetry group of a simple tensor. We exploit this result in order to prove and extend a version of the Lieb-Schultz-Mattis theorem, one of the basic results in many-body physics, in the context of MPS. We illustrate the results with an exhaustive search of SU(2)--invariant two-body Hamiltonians which have such MPS as exact ground states or excitations.
We consider the description of open quantum systems with probability sinks (or sources) in terms of general non-Hermitian Hamiltonians.~Within such a framework, we study novel possible definitions of the quantum linear entropy as an indicator of the flow of information during the dynamics. Such linear entropy functionals are necessary in the case of a partially Wigner-transformed non-Hermitian Hamiltonian (which is typically useful within a mixed quantum-classical representation). Both the case of a system represented by a pure non-Hermitian Hamiltonian as well as that of the case of non-Hermitian dynamics in a classical bath are explicitly considered.
Complex extension of quantum mechanics and the discovery of pseudo-unitarily invariant random matrix theory has set the stage for a number of applications of these concepts in physics. We briefly review the basic ideas and present applications to problems in statistical mechanics where new results have become possible. We have found it important to mention the precise directions where advances could be made if further results become available.