We show that the dispersive force between a spherical nanoparticle (with a radius $le$ 100 nm) and a substrate is enhanced by several orders of magnitude when the sphere is near to the substrate. We calculate exactly the dispersive force in the non-retarded limit by incorporating the contributions to the interaction from of all the multipolar electromagnetic modes. We show that as the sphere approaches the substrate, the fluctuations of the electromagnetic field, induced by the vacuum and the presence of the substrate, the dispersive force is enhanced by orders of magnitude. We discuss this effect as a function of the size of the sphere.