No Arabic abstract
An electromagnetic field quadrature measurement, performed on one of the modes of the nonlocal single-photon state $a|1,0>-b|0,1>$, collapses it into a superposition of the single-photon and vacuum states in the other mode. We use this effect to implement remote preparation of arbitrary single-mode photonic qubits conditioned on observation of a preselected quadrature value. The quantum efficiency of the prepared qubit can be higher than that of the initial single photon.
We perform balanced homodyne detection of the electromagnetic field in a single-mode tapered optical nanofiber surrounded by rubidium atoms in a magneto-optical trap. Resonant fluorescence of atoms into the nanofiber mode manifests itself as increased quantum noise of the field quadratures. The autocorrelation function of the homodyne detectors output photocurrent exhibits exponential fall-off with a decay time constant of $26.3pm 0.6$ ns, which is consistent with the theoretical expectation under our experimental conditions. To our knowledge, this is the first experiment in which fluorescence has been observed and measured by balanced optical homodyne detection.
We consider a scenario of remote state preparation of qubits where a single copy of an entangled state is shared between Alice and several Bobs who sequentially perform unsharp single-particle measurements. We show that a substantial number of Bobs can optimally and reliably prepare the qubit in Alices lab exceeding the classical realm. There can be at most 16 Bobs in a sequence when the state is chosen from the equatorial circle of the Bloch sphere. In general, depending upon the choice of a circle from the Bloch sphere, the optimum number of Bobs ranges from 12 for the worst choice, to become remarkably very large corresponding to circles in the polar regions, in case of an initially shared maximally entangled state. We further show that the bound on the number of observers successful in implementing remote state preparation is higher for maximally entangled initial states than that for non-maximally entangled initial states.
Magnetic solitons can constitute a means for manipulating qubits from a distance. This would overcome the necessity of directly applying selective magnetic fields, which is unfeasible in the case of a matrix of qubits embedded in a solid-state quantum device. If the latter contained one-dimensional Heisenberg spin chains coupled to each qubit, one can originate a soliton in a selected chain by applying a time-dependent field at one end of it, far from the qubits. The generation of realistic solitons has been simulated. When a suitable soliton passes by, the coupled qubit undergoes nontrivial operations, even in the presence of moderate thermal noise.
A qubit chosen from equatorial or polar great circles on a Bloch sphere can be remotely prepared with an Einstain-Podolsky-Rosen (EPR) state shared and a cbit communication. We generalize this protocal into an arbitrary longitudinal qubit on the Bloch sphere in which the azimuthal angle phi can be an arbitrary value instead of only being zero. The generalized scheme was experimentally realized using liquid-state nuclear magnetic resonance (NMR) techniques. Also, we have experimentally demonstrated remote state measurement (RSM) on an arbitary qubit proposed by Pati.
How to uses shared entanglement and forward classical communication to remotely prepare an arbitrary (mixed or pure) state has been fascinating quantum information scientists. A constructive scheme has been given by Berry for remotely preparing a general pure state with a pure entangled state and finite classical communication. Based on this scheme, for high-dimensional systems it is possible to use a coding of the target state to optimize the classical communication cost. Unfortunately, for low-dimensional systems such as a pure qubit the coding method is inapplicable. Because qubit plays a central role in quantum information theory, we propose an optimization procedure which can be used to minimize the classical communication cost in the remote preparation of a general pure qubit. Interestingly, our optimization procedure is linked to the uniform arrangement of $N$ points on the Bloch sphere, which provides a geometric description.