Asymmetric quantum telecloning of d-level systems and broadcasting of entanglement to different locations using the many-to-many communication protocol


Abstract in English

We propose a generalization of quantum teleportation: the so-called many-to-many quantum communication of the information of a d-level system from N spatially separated senders to M>N receivers situated at different locations. We extend the concept of asymmetric telecloning from qubits to d-dimensional systems. We investigate the broadcasting of entanglement by using local 1->2 optimal universal asymmetric Pauli machines and show that the maximal fidelities of the two final entangled states are obtained when symmetric machines are applied. Cloning of entanglement is studied using a nonlocal optimal universal asymmetric cloning machine and we show that the symmetric machine optimally copies the entanglement. The many-to-many teleportation scheme is applied in order to distribute entanglement shared between two observers to two pairs of spatially separated observers.

Download