Do you want to publish a course? Click here

Towards single-atom detection on a chip

100   0   0.0 ( 0 )
 Added by Peter Horak
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the optical detection of single atoms held in a microscopic atom trap close to a surface. Laser light is guided by optical fibers or optical micro-structures via the atom to a photo-detector. Our results suggest that with present-day technology, micro-cavities can be built around the atom with sufficiently high finesse to permit unambiguous detection of a single atom in the trap with 10 $mu$s of integration. We compare resonant and non-resonant detection schemes and we discuss the requirements for detecting an atom without causing it to undergo spontaneous emission.



rate research

Read More

We describe experiments on trapping of atoms in microscopic magneto-optical traps on an optically transparent permanent-magnet atom chip. The chip is made of magnetically hard ferrite-garnet material deposited on a dielectric substrate. The confining magnetic fields are produced by miniature magnetized patterns recorded in the film by magneto-optical techniques. We trap Rb atoms on these structures by applying three crossed pairs of counter-propagating laser beams in the conventional magneto-optical trapping (MOT) geometry. We demonstrate the flexibility of the concept in creation and in-situ modification of the trapping geometries through several experiments.
We have trapped rubidium atoms in the magnetic field produced by a superconducting atom chip operated at liquid Helium temperatures. Up to $8.2cdot 10^5$ atoms are held in a Ioffe-Pritchard trap at a distance of 440 $mu$m from the chip surface, with a temperature of 40 $mu$K. The trap lifetime reaches 115 s at low atomic densities. These results open the way to the exploration of atom--surface interactions and coherent atomic transport in a superconducting environment, whose properties are radically different from normal metals at room temperature.
We describe a robust and reliable fluorescence detector for single atoms that is fully integrated into an atom chip. The detector allows spectrally and spatially selective detection of atoms, reaching a single atom detection efficiency of 66%. It consists of a tapered lensed single-mode fiber for precise delivery of excitation light and a multi-mode fiber to collect the fluorescence. The fibers are mounted in lithographically defined holding structures on the atom chip. Neutral 87Rb atoms propagating freely in a magnetic guide are detected and the noise of their fluorescence emission is analyzed. The variance of the photon distribution allows to determine the number of detected photons / atom and from there the atom detection efficiency. The second order intensity correlation function of the fluorescence shows near-perfect photon anti-bunching and signs of damped Rabi-oscillations. With simple improvements one can boost the detection efficiency to > 95%.
Matter-wave interference experiments enable us to study matter at its most basic, quantum level and form the basis of high-precision sensors for applications such as inertial and gravitational field sensing. Success in both of these pursuits requires the development of atom-optical elements that can manipulate matter waves at the same time as preserving their coherence and phase. Here, we present an integrated interferometer based on a simple, coherent matter-wave beam splitter constructed on an atom chip. Through the use of radio-frequency-induced adiabatic double-well potentials, we demonstrate the splitting of Bose-Einstein condensates into two clouds separated by distances ranging from 3 to 80 microns, enabling access to both tunnelling and isolated regimes. Moreover, by analysing the interference patterns formed by combining two clouds of ultracold atoms originating from a single condensate, we measure the deterministic phase evolution throughout the splitting process. We show that we can control the relative phase between the two fully separated samples and that our beam splitter is phase-preserving.
234 - A. Gunther , H. Bender , A. Stibor 2008
We experimentally demonstrate optical spectroscopy of magnetically trapped atoms on an atom chip. High resolution optical spectra of individual trapped clouds are recorded within a few hundred milliseconds. Detection sensitivities close to the single atom level are obtained by photoionization of the excited atoms and subsequent ion detection with a channel electron multiplier. Temperature and decay rates of the trapped atomic cloud can be monitored in real time for several seconds with only little detection losses. The spectrometer can be used for investigations of ultracold atomic mixtures and for the development of interferometric quantum sensors on atom chips.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا