Do you want to publish a course? Click here

Antisymmetric multi-partite quantum states and their applications

94   0   0.0 ( 0 )
 Added by Gernot Alber
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

Entanglement is a powerful resource for processing quantum information. In this context pure, maximally entangled states have received considerable attention. In the case of bipartite qubit-systems the four orthonormal Bell-states are of this type. One of these Bell states, the singlet Bell-state, has the additional property of being antisymmetric with respect to particle exchange. In this contribution we discuss possible generalizations of this antisymmetric Bell-state to cases with more than two particles and with single-particle Hilbert spaces involving more than two dimensions. We review basic properties of these totally antisymmetric states. Among possible applications of this class of states we analyze a new quantum key sharing protocol and methods for comparing quantum states.



rate research

Read More

We give an introduction to the theory of multi-partite entanglement. We begin by describing the coordinate system of the field: Are we dealing with pure or mixed states, with single or multiple copies, what notion of locality is being used, do we aim to classify states according to their type of entanglement or to quantify it? Building on the general theory of multi-partite entanglement - to the extent that it has been achieved - we turn to explaining important classes of multi-partite entangled states, including matrix product states, stabilizer and graph states, bosonic and fermionic Gaussian states, addressing applications in condensed matter theory. We end with a brief discussion of various applications that rely on multi-partite entangled states: quantum networks, measurement-based quantum computing, non-locality, and quantum metrology.
The characterization of quantum polarization of light requires knowledge of all the moments of the Stokes variables, which are appropriately encoded in the multipole expansion of the density matrix. We look into the cumulative distribution of those multipoles and work out the corresponding extremal pure states. We find that SU(2) coherent states are maximal to any order whereas the converse case of minimal states (which can be seen as the most quantum ones) is investigated for a diverse range of the number of photons. Taking advantage of the Majorana representation, we recast the problem as that of distributing a number of points uniformly over the surface of the Poincare sphere.
We implement a Quantum Autoencoder (QAE) as a quantum circuit capable of correcting Greenberger-Horne-Zeilinger (GHZ) states subject to various noisy quantum channels : the bit-flip channel and the more general quantum depolarizing channel. The QAE shows particularly interesting results, as it enables to perform an almost perfect reconstruction of noisy states, but can also, more surprisingly, act as a generative model to create noise-free GHZ states. Finally, we detail a useful application of QAEs : Quantum Secret Sharing (QSS). We analyze how noise corrupts QSS, causing it to fail, and show how the QAE allows the QSS protocol to succeed even in the presence of noise.
We show that spin squeezing criteria commonly used for entanglement detection can be erroneous, if the probe is not symmetric. We then derive a lower bound on squeezing for separable states in spin systems probed asymmetrically. Using this we further develop a procedure that allows us to verify the degree of entanglement of a quantum state in the spin system. Finally, we apply our method for entanglement verification to existing experimental data, and use it to prove the existence of tri-partite entanglement in a spin squeezed atomic ensemble.
Combining quantum information theory with thermodynamics unites 21st-century technology with 19th-century principles. The union elucidates the spread of information, the flow of time, and the leveraging of energy. This thesis contributes to the theory of quantum thermodynamics, particularly to quantum-information-theoretic thermodynamics. The thesis also contains applications of the theory, wielded as a toolkit, across physics. Fields touched on include atomic, molecular, and optical physics; nonequilibrium statistical mechanics; condensed matter; high-energy physics; and chemistry. I propose the name quantum steampunk for this program. The term derives from the steampunk genre of literature, art, and cinema that juxtaposes futuristic technologies with 19th-century settings.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا