There are self-adjoint operators which determine both spectral and semispectral measures. These measures have very different commutativity and covariance properties. This fact poses a serious question on the physical meaning of such a self-adjoint operator and its associated operator measures.
We review the notion of complementarity of observables in quantum mechanics, as formulated and studied by Paul Busch and his colleagues over the years. In addition, we provide further clarification on the operational meaning of the concept, and present several characterisations of complementarity - some of which new - in a unified manner, as a consequence of a basic factorisation lemma for quantum effects. We work out several applications, including the canonical cases of position-momentum, position-energy, number-phase, as well as periodic observables relevant to spatial interferometry. We close the paper with some considerations of complementarity in a noisy setting, focusing especially on the case of convolutions of position and momentum, which was a recurring topic in Pauls work on operational formulation of quantum measurements and central to his philosophy of unsharp reality.
We study decoherence in a simple quantum mechanical model using two approaches. Firstly, we follow the conventional approach to decoherence where one is interested in solving the reduced density matrix from the perturbative master equation. Secondly, we consider our novel correlator approach to decoherence where entropy is generated by neglecting observationally inaccessible correlators. We show that both methods can accurately predict decoherence time scales. However, the perturbative master equation generically suffers from instabilities which prevents us to reliably calculate the systems total entropy increase. We also discuss the relevance of the results in our quantum mechanical model for interacting field theories.
Classical chimera states are paradigmatic examples of partial synchronization patterns emerging in nonlinear dynamics. These states are characterized by the spatial coexistence of two dramatically different dynamical behaviors, i.e., synchronized and desynchronized dynamics. Our aim in this contribution is to discuss signatures of chimera states in quantum mechanics. We study a network with a ring topology consisting of N coupled quantum Van der Pol oscillators. We describe the emergence of chimera-like quantum correlations in the covariance matrix. Further, we establish the connection of chimera states to quantum information theory by describing the quantum mutual information for a bipartite state of the network.
Pseudo-random number generators are widely used in many branches of science, mainly in applications related to Monte Carlo methods, although they are deterministic in design and, therefore, unsuitable for tackling fundamental problems in security and cryptography. The natural laws of the microscopic realm provide a fairly simple method to generate non-deterministic sequences of random numbers, based on measurements of quantum states. In practice, however, the experimental devices on which quantum random number generators are based are often unable to pass some tests of randomness. In this review, we briefly discuss two such tests, point out the challenges that we have encountered and finally present a fairly simple method that successfully generates non-deterministic maximally random sequences.
There has been an intense debate on the quantum versus classical origin of ghost imaging with a thermal light source over the last two decades. A lot of distinguished work has contributed to this topic, both theoretically and experimentally, however, to this day this quantum-classical dilemma still persists. Here we formulate for the first time a density matrix in the photon orbital angular momentum (OAM) Hilbert space to fully characterize the two-arm ghost imaging system with the basic definition of thermal light sources. Our formulation offers a mathematically precise method to describe the formation of a ghost image in a nonlocal fashion. More importantly, it provides a more physically intuitive picture to reveal the quantumness hidden in the thermal ghost imaging, and therefore, presenting a sound resolution to the ongoing quantum-classical dilemma, which distinguishes the quantum correlations beyond entanglement in terms of geometric measure of discord. Our work also suggests further studies of using thermal multi-photon OAM states directly to implement some quantum information tasks.