Do you want to publish a course? Click here

Quantum learning and universal quantum matching machine

73   0   0.0 ( 0 )
 Added by Masahide Sasaki
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

Suppose that three kinds of quantum systems are given in some unknown states $ket f^{otimes N}$, $ket{g_1}^{otimes K}$, and $ket{g_2}^{otimes K}$, and we want to decide which textit{template} state $ket{g_1}$ or $ket{g_2}$, each representing the feature of the pattern class ${cal C}_1$ or ${cal C}_2$, respectively, is closest to the input textit{feature} state $ket f$. This is an extension of the pattern matching problem into the quantum domain. Assuming that these states are known a priori to belong to a certain parametric family of pure qubit systems, we derive two kinds of matching strategies. The first is a semiclassical strategy which is obtained by the natural extension of conventional matching strategies and consists of a two-stage procedure: identification (estimation) of the unknown template states to design the classifier (textit{learning} process to train the classifier) and classification of the input system into the appropriate pattern class based on the estimated results. The other is a fully quantum strategy without any intermediate measurement which we might call as the {it universal quantum matching machine}. We present the Bayes optimal solutions for both strategies in the case of K=1, showing that there certainly exists a fully quantum matching procedure which is strictly superior to the straightforward semiclassical extension of the conventional matching strategy based on the learning process.



rate research

Read More

Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Since quantum systems produce counter-intuitive patterns believed not to be efficiently produced by classical systems, it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement concrete quantum software that offers such advantages. Recent work has made clear that the hardware and software challenges are still considerable but has also opened paths towards solutions.
Distributed training across several quantum computers could significantly improve the training time and if we could share the learned model, not the data, it could potentially improve the data privacy as the training would happen where the data is located. However, to the best of our knowledge, no work has been done in quantum machine learning (QML) in federation setting yet. In this work, we present the federated training on hybrid quantum-classical machine learning models although our framework could be generalized to pure quantum machine learning model. Specifically, we consider the quantum neural network (QNN) coupled with classical pre-trained convolutional model. Our distributed federated learning scheme demonstrated almost the same level of trained model accuracies and yet significantly faster distributed training. It demonstrates a promising future research direction for scaling and privacy aspects.
We study the quantum synchronization between a pair of two-level systems inside two coupled cavities. By using a digital-analog decomposition of the master equation that rules the system dynamics, we show that this approach leads to quantum synchronization between both two-level systems. Moreover, we can identify in this digital-analog block decomposition the fundamental elements of a quantum machine learning protocol, in which the agent and the environment (learning units) interact through a mediating system, namely, the register. If we can additionally equip this algorithm with a classical feedback mechanism, which consists of projective measurements in the register, reinitialization of the register state and local conditional operations on the agent and environment subspace, a powerful and flexible quantum machine learning protocol emerges. Indeed, numerical simulations show that this protocol enhances the synchronization process, even when every subsystem experience different loss/decoherence mechanisms, and give us the flexibility to choose the synchronization state. Finally, we propose an implementation based on current technologies in superconducting circuits.
In this work we present the Scaled QUantum IDentifier (SQUID), an open-source framework for exploring hybrid Quantum-Classical algorithms for classification problems. The classical infrastructure is based on PyTorch and we provide a standardized design to implement a variety of quantum models with the capability of back-propagation for efficient training. We present the structure of our framework and provide examples of using SQUID in a standard binary classification problem from the popular MNIST dataset. In particular, we highlight the implications for scalability for gradient-based optimization of quantum models on the choice of output for variational quantum models.
Quantum computers are expected to surpass the computational capabilities of classical computers during this decade, and achieve disruptive impact on numerous industry sectors, particularly finance. In fact, finance is estimated to be the first industry sector to benefit from Quantum Computing not only in the medium and long terms, but even in the short term. This review paper presents the state of the art of quantum algorithms for financial applications, with particular focus to those use cases that can be solved via Machine Learning.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا