Do you want to publish a course? Click here

Adaptive Quantum Measurements of a Continuously Varying Phase

51   0   0.0 ( 0 )
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the problem of quantum-limited estimation of a stochastically varying phase of a continuous beam (rather than a pulse) of the electromagnetic field. We consider both non-adaptive and adaptive measurements, and both dyne detection (using a local oscillator) and interferometric detection. We take the phase variation to be dotphi = sqrt{kappa}xi(t), where xi(t) is delta-correlated Gaussian noise. For a beam of power P, the important dimensionless parameter is N=P/hbaromegakappa, the number of photons per coherence time. For the case of dyne detection, both continuous-wave (cw) coherent beams and cw (broadband) squeezed beams are considered. For a coherent beam a simple feedback scheme gives good results, with a phase variance simeq N^{-1/2}/2. This is sqrt{2} times smaller than that achievable by nonadaptive (heterodyne) detection. For a squeezed beam a more accurate feedback scheme gives a variance scaling as N^{-2/3}, compared to N^{-1/2} for heterodyne detection. For the case of interferometry only a coherent input into one port is considered. The locally optimal feedback scheme is identified, and it is shown to give a variance scaling as N^{-1/2}. It offers a significant improvement over nonadaptive interferometry only for N of order unity.



rate research

Read More

Phase transitions in dissipative quantum systems are intriguing because they are induced by the interplay between coherent quantum and incoherent classical fluctuations. Here, we investigate the crossover from a quantum to a classical absorbing phase transition arising in the quantum contact process (QCP). The Lindblad equation contains two parameters, $omega$ and $kappa$, which adjust the contributions of the quantum and classical effects, respectively. We find that in one dimension when the QCP starts from a homogeneous state with all active sites, there exists a critical line in the region $0 le kappa < kappa_*$ along which the exponent $alpha$ (which is associated with the density of active sites) decreases continuously from a quantum to the classical directed percolation (DP) value. This behavior suggests that the quantum coherent effect remains to some extent near $kappa=0$. However, when the QCP in one dimension starts from a heterogeneous state with all inactive sites except for one active site, all the critical exponents have the classical DP values for $kappa ge 0$. In two dimensions, anomalous crossover behavior does not occur, and classical DP behavior appears in the entire region of $kappa ge 0$ regardless of the initial configuration. Neural network machine learning is used to identify the critical line and determine the correlation length exponent. Numerical simulations using the quantum jump Monte Carlo technique and tensor network method are performed to determine all the other critical exponents of the QCP.
We derive, and experimentally demonstrate, an interferometric scheme for unambiguous phase estimation with precision scaling at the Heisenberg limit that does not require adaptive measurements. That is, with no prior knowledge of the phase, we can obtain an estimate of the phase with a standard deviation that is only a small constant factor larger than the minimum physically allowed value. Our scheme resolves the phase ambiguity that exists when multiple passes through a phase shift, or NOON states, are used to obtain improved phase resolution. Like a recently introduced adaptive technique [Higgins et al 2007 Nature 450 393], our experiment uses multiple applications of the phase shift on single photons. By not requiring adaptive measurements, but rather using a predetermined measurement sequence, the present scheme is both conceptually simpler and significantly easier to implement. Additionally, we demonstrate a simplified adaptive scheme that also surpasses the standard quantum limit for single passes.
Adaptive feedback normally provides the greatest accuracy for optical phase measurements. New advances in nitrogen vacancy centre technology have enabled magnetometry via individual spin measurements, which are similar to optical phase measurements but with low visibility. The adaptive measurements that previously worked well with high-visibility optical interferometry break down and give poor results for nitrogen vacancy centre measurements. We use advanced search techniques based on swarm optimisation to design better adaptive measurements that can provide improved measurement accuracy with low-visibility interferometry, with applications in nitrogen vacancy centre magnetometry.
Adaptive techniques make practical many quantum measurements that would otherwise be beyond current laboratory capabilities. For example: they allow discrimination of nonorthogonal states with a probability of error equal to the Helstrom bound; they allow measurement of the phase of a quantum oscillator with accuracy approaching (or in some cases attaining) the Heisenberg limit; and they allow estimation of phase in interferometry with a variance scaling at the Heisenberg limit, using only single qubit measurement and control. Each of these examples has close links with quantum information, in particular experimental optical quantum information: the first is a basic quantum communication protocol; the second has potential application in linear optical quantum computing; the third uses an adaptive protocol inspired by the quantum phase estimation algorithm. We discuss each of these examples, and their implementation in the laboratory, but concentrate upon the last, which was published most recently [Higgins {em et al.}, Nature vol. 450, p. 393, 2007].
We investigate quantum state tomography (QST) for pure states and quantum process tomography (QPT) for unitary channels via $adaptive$ measurements. For a quantum system with a $d$-dimensional Hilbert space, we first propose an adaptive protocol where only $2d-1$ measurement outcomes are used to accomplish the QST for $all$ pure states. This idea is then extended to study QPT for unitary channels, where an adaptive unitary process tomography (AUPT) protocol of $d^2+d-1$ measurement outcomes is constructed for any unitary channel. We experimentally implement the AUPT protocol in a 2-qubit nuclear magnetic resonance system. We examine the performance of the AUPT protocol when applied to Hadamard gate, $T$ gate ($pi/8$ phase gate), and controlled-NOT gate, respectively, as these gates form the universal gate set for quantum information processing purpose. As a comparison, standard QPT is also implemented for each gate. Our experimental results show that the AUPT protocol that reconstructing unitary channels via adaptive measurements significantly reduce the number of experiments required by standard QPT without considerable loss of fidelity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا