No Arabic abstract
The quantum search algorithm is a technique for searching N possibilities in only sqrt(N) steps. Although the algorithm itself is widely known, not so well known is the series of steps that first led to it, these are quite different from any of the generally known forms of the algorithm. This paper describes these steps, which start by discretizing Schrodingers equation. This paper also provides a self-contained introduction to the quantum search algorithm from a new perspective.
The Vlasov-Maxwell system of equations, which describes classical plasma physics, is extremely challenging to solve, even by numerical simulation on powerful computers. By linearizing and assuming a Maxwellian background distribution function, we convert the Vlasov-Maxwell system into a Hamiltonian simulation problem. Then for the limiting case of electrostatic Landau damping, we design and verify a quantum algorithm, appropriate for a future error-corrected universal quantum computer. While the classical simulation has costs that scale as $mathcal{O}(N_v t)$ for a velocity grid with $N_v$ grid points and simulation time $t$, our quantum algorithm scales as $mathcal{O}(text{polylog}(N_v) t/delta)$ where $delta$ is the measurement error, and weaker scalings have been dropped. Extensions, including electromagnetics and higher dimensions, are discussed. A quantum computer could efficiently handle a high-resolution, six-dimensional phase-space grid, but the $1/delta$ cost factor to extract an accurate result remains a difficulty. This paper provides insight into the possibility of someday achieving efficient plasma simulation on a quantum computer.
Quantum search is a quantum mechanical technique for searching N possibilities in only sqrt(N) steps. This has been proved to be the best possible algorithm for the exhuastive search problem in the sense the number of queries it requires cannot be reduced. However, as this paper shows, the number of non-query operations, and thus the total number of operations, can be reduced. The number of non-query unitary operations can be reduced by a factor of log N/alpha*log(log N) while increasing the number of queries by a factor of only (1+(log N)^{-alpha}). Various choices of alpha yield different variants of the algorithm. For example, by choosing alpha to be O(log N/log(log N)), the number of non-query unitary operations can be reduced by 40% while increasing the number of queries by just two.
Quantum computing has noteworthy speedup over classical computing by taking advantage of quantum parallelism, i.e., the superposition of states. In particular, quantum search is widely used in various computationally hard problems. Grovers search algorithm finds the target element in an unsorted database with quadratic speedup than classical search and has been proved to be optimal in terms of the number of queries to the database. The challenge, however, is that Grovers search algorithm leads to high numbers of quantum gates, which make it infeasible for the Noise-Intermediate-Scale-Quantum (NISQ) computers. In this paper, we propose a novel hardware efficient quantum search algorithm to overcome this challenge. Our key idea is to replace the global diffusion operation with low-cost local diffusions. Our analysis shows that our algorithm has similar oracle complexity to the original Grovers search algorithm while significantly reduces the circuit depth and gate count. The circuit cost reduction leads to a remarkable improvement in the system success rates, paving the way for quantum search on NISQ machines.
Encoding quantum states in complex multiphoton fields can overcome loss during signal transmission in a quantum network. Transmitting quantum information encoded in this way requires that locally stored states can be converted to propagating fields. Here we experimentally show the controlled conversion of multiphoton quantum states, like Schrodinger cat states, from a microwave cavity quantum memory into propagating modes. By parametric conversion using the nonlinearity of a single Josephson junction, we can release the cavity state in ~500 ns, about 3 orders of magnitude faster than its intrinsic lifetime. This `catapult faithfully converts arbitrary cavity fields to traveling signals with an estimated efficiency of > 90%, enabling on-demand generation of complex itinerant quantum states. Importantly, the release process can be controlled precisely on fast time scales, allowing us to generate entanglement between the cavity and the traveling mode by partial conversion. Our system can serve as the backbone of a microwave quantum network, paving the way towards error-correctable distribution of quantum information and the transfer of highly non-classical states to hybrid quantum systems.
We question whether the measurement based quantum computing algorithm is in fact Grovers algorithm or simply a similar oracular search method. The two algorithms share several qualitative features especially in the case of the trivial 4 element search, which is the largest size photonic search algorithm that has been experimentally implemented to date. This has led some to refer to both substantiations as Grovers algorithm. We compare multiple features of the two algorithms including the behavior of the oracle tags and the entanglement dynamics, both qualitatively and quantitatively. We find significant and fundamental differences in the operation of the two algorithms, particularly in cases involving searches on more than four elements.