Do you want to publish a course? Click here

Particle localization and the Notion of Einstein Causality

53   0   0.0 ( 0 )
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

The notion of Einstein causality, i.e. the limiting role of the velocity of light in the transmission of signals, is discussed. It is pointed out that Nimtz and coworkers use the notion of signal velocity in a different sense from Einstein and that their experimental results are in full agreement with Einstein causality in its ordinary sense. We also show that under quite general assumptions instantaneous spreading of particle localization occurs in quantum theory, relativistic or not, with fields or without. We discuss if this affects Einstein causality.



rate research

Read More

65 - N.Barat , J.C.Kimball 2001
Theorems (most notably by Hegerfeldt) prove that an initially localized particle whose time evolution is determined by a positive Hamiltonian will violate causality. We argue that this apparent paradox is resolved for a free particle described by either the Dirac equation or the Klein-Gordon equation because such a particle cannot be localized in the sense required by the theorems.
We present a scheme to describe the dynamics of accelerating discrete-time quantum walk for one- and two-particle in position space. We show the effect of acceleration in enhancing the entanglement between the particle and position space in one-particle quantum walk and in generation of entanglement between the two unentangled particle in two-particle quantum walk. By introducing the disorder in the form of phase operator we study the transition from localization to delocalization as a function of acceleration. These inter-winding connection between acceleration, entanglement generation and localization along with well established connection of quantum walks with Dirac equation can be used to probe further in the direction of understanding the connection between acceleration, mass and entanglement in relativistic quantum mechanics and quantum field theory. Expansion of operational tools for quantum simulations and for modelling quantum dynamics of accelerated particle using quantum walks is an other direction where these results can play an important role.
225 - P.Busch , J.Kiukas , P.Lahti 2009
The notion coexistence of quantum observables was introduced to describe the possibility of measuring two or more observables together. Here we survey the various different formalisations of this notion and their connections. We review examples illustrating the necessary degrees of unsharpness for two noncommuting observables to be jointly measurable (in one sense of the phrase). We demonstrate the possibility of measuring together (in another sense of the phrase) noncoexistent observables. This leads us to a reconsideration of the connection between joint measurability and noncommutativity of observables and of the statistical and individual aspects of quantum measurements.
241 - H. Buhrman , S. Massar 2004
An EPR-Bell type experiment carried out on an entangled quantum system can produce correlations stronger than allowed by local realistic theories. However there are correlations that are no-signaling and are more non local than the quantum correlations. Here we show that any correlations more non local than those achievable in an EPR-Bell type experiment necessarily allow -in the context of the quantum formalism- both for signaling and for generation of entanglement. We use our approach to rederive Cirelson bound for the CHSH expression, and we derive a new Cirelson type bound for qutrits. We discuss in detail the interpretation of our approach.
In the understanding of the fundamental interactions, the origin of an arrow of time is viewed as problematic. However, quantum field theory has an arrow of causality, which tells us which time direction is the past lightcone and which is the future. This direction is tied to the conventions used in the quantization procedures. The different possible causal directions have related physics - in this sense they are covariant under time-reversal. However, only one causal direction emerges for a given set of conventions. This causal arrow tells us the direction that scattering reactions proceed. The time direction of scattering in turn tells us the time direction for which entropy increases - the so-called arrow of thermodynamics. This connection is overlooked in most discussions of the arrow of time.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا