No Arabic abstract
The smallest quantum code that can correct all one-qubit errors is based on five qubits. We experimentally implemented the encoding, decoding and error-correction quantum networks using nuclear magnetic resonance on a five spin subsystem of labeled crotonic acid. The ability to correct each error was verified by tomography of the process. The use of error-correction for benchmarking quantum networks is discussed, and we infer that the fidelity achieved in our experiment is sufficient for preserving entanglement.
Experimental realization of stabilizer-based quantum error correction (QEC) codes that would yield superior logical qubit performance is one of the formidable task for state-of-the-art quantum processors. A major obstacle towards realizing this goal is the large footprint of QEC codes, even those with a small distance. We propose a circuit based on the minimal distance-3 QEC code, which requires only 5 data qubits and 5 ancilla qubits, connected in a ring with iSWAP gates implemented between neighboring qubits. Using a density-matrix simulation, we show that, thanks to its smaller footprint, the proposed code has a lower logical error rate than Surface-17 for similar physical error rates. We also estimate the performance of a neural network-based error decoder, which can be trained to accommodate the error statistics of a specific quantum processor by training on experimental data.
Fault-tolerant quantum computing demands many qubits with long lifetimes to conduct accurate quantum gate operations. However, external noise limits the computing time of physical qubits. Quantum error correction codes may extend such limits, but imperfect gate operations introduce errors to the correction procedure as well. The additional gate operations required due to the physical layout of qubits exacerbate the situation. Here, we use density-matrix simulations to investigate the performance change of logical qubits according to quantum error correction codes and qubit layouts and the expected performance of logical qubits with gate operation time and gate error rates. Considering current qubit technology, the small quantum error correction codes are chosen. Assuming 0.1% gate error probability, a logical qubit encoded by a 5-qubit quantum error correction code is expected to have a fidelity 0.25 higher than its physical counterpart.
Quantum computers promise to solve certain problems exponentially faster than possible classically but are challenging to build because of their increased susceptibility to errors. Remarkably, however, it is possible to detect and correct errors without destroying coherence by using quantum error correcting codes [1]. The simplest of these are the three-qubit codes, which map a one-qubit state to an entangled three-qubit state and can correct any single phase-flip or bit-flip error of one of the three qubits, depending on the code used [2]. Here we demonstrate both codes in a superconducting circuit by encoding a quantum state as previously shown [3,4], inducing errors on all three qubits with some probability, and decoding the error syndrome by reversing the encoding process. This syndrome is then used as the input to a three-qubit gate which corrects the primary qubit if it was flipped. As the code can recover from a single error on any qubit, the fidelity of this process should decrease only quadratically with error probability. We implement the correcting three-qubit gate, known as a conditional-conditional NOT (CCNot) or Toffoli gate, using an interaction with the third excited state of a single qubit, in 63 ns. We find 85pm1% fidelity to the expected classical action of this gate and 78pm1% fidelity to the ideal quantum process matrix. Using it, we perform a single pass of both quantum bit- and phase-flip error correction with 76pm0.5% process fidelity and demonstrate the predicted first-order insensitivity to errors. Concatenating these two codes and performing them on a nine-qubit device would correct arbitrary single-qubit errors. When combined with recent advances in superconducting qubit coherence times [5,6], this may lead to scalable quantum technology.
Quantum error correction is an essential ingredient for universal quantum computing. Despite tremendous experimental efforts in the study of quantum error correction, to date, there has been no demonstration in the realisation of universal quantum error correcting code, with the subsequent verification of all key features including the identification of an arbitrary physical error, the capability for transversal manipulation of the logical state, and state decoding. To address this challenge, we experimentally realise the $[![5,1,3]!]$ code, the so-called smallest perfect code that permits corrections of generic single-qubit errors. In the experiment, having optimised the encoding circuit, we employ an array of superconducting qubits to realise the $[![5,1,3]!]$ code for several typical logical states including the magic state, an indispensable resource for realising non-Clifford gates. The encoded states are prepared with an average fidelity of $57.1(3)%$ while with a high fidelity of $98.6(1)%$ in the code space. Then, the arbitrary single-qubit errors introduced manually are identified by measuring the stabilizers. We further implement logical Pauli operations with a fidelity of $97.2(2)%$ within the code space. Finally, we realise the decoding circuit and recover the input state with an overall fidelity of $74.5(6)%$, in total with $92$ gates. Our work demonstrates each key aspect of the $[![5,1,3]!]$ code and verifies the viability of experimental realization of quantum error correcting codes with superconducting qubits.
We present a scheme for correcting qubit loss error while quantum computing with neutral atoms in an addressable optical lattice. The qubit loss is first detected using a quantum non-demolition measurement and then transformed into a standard qubit error by inserting a new atom in the vacated lattice site. The logical qubit, encoded here into four physical qubits with the Grassl-Beth-Pellizzari code, is reconstructed via a sequence of one projective measurement, two single-qubit gates, and three controlled-NOT operations. No ancillary qubits are required. Both quantum non-demolition and projective measurements are implemented using a cavity QED system which can also detect a general leakage error and thus allow qubit loss to be corrected within the same framework. The scheme can also be applied in quantum computation with trapped ions or with photons.