Do you want to publish a course? Click here

Nonlinear optics with less than one photon

56   0   0.0 ( 0 )
 Added by Kevin J. Resch
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate suppression and enhancement of spontaneous parametric down- conversion via quantum interference with two weak fields from a local oscillator (LO). Pairs of LO photons are observed to upconvert with high efficiency for appropriate phase settings, exhibiting an effective nonlinearity enhanced by at least 10 orders of magnitude. This constitutes a two-photon switch, and promises to be useful for a variety of nonlinear optical effects at the quantum level.



rate research

Read More

The scattering of a flying photon by a two-level system ultrastrongly coupled to a one-dimensional photonic waveguide is studied numerically. The photonic medium is modeled as an array of coupled cavities and the whole system is analyzed beyond the rotating wave approximation using Matrix Product States. It is found that the scattering is strongly influenced by the single- and multi-photon dressed bound states present in the system. In the ultrastrong coupling regime a new channel for inelastic scattering appears, where an incident photon deposits energy into the qubit, exciting a photon-bound state, and escaping with a lower frequency. This single-photon nonlinear frequency conversion process can reach up to 50% efficiency. Other remarkable features in the scattering induced by counter-rotating terms are a blueshift of the reflection resonance and a Fano resonance due to long-lived excited states
154 - A. Javadi , I. Sollner , M. Arcari 2015
Strong nonlinear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, nonlinear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created . Here we show that a single quantum dot in a photonic-crystal waveguide can be utilized as a giant nonlinearity sensitive at the single-photon level. The nonlinear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon-photon bound state. The quantum nonlinearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures.
We study a 2D system of trion-polaritons at the quantum level and demonstrate that for monolayer semiconductors they can exhibit a strongly nonlinear optical response. The effect is due to the composite nature of trion-based excitations resulting in their nontrivial quantum statistical properties, and enhanced phase space filling effects. We present the full quantum theory to describe the statistics of trion-polaritons, and demonstrate that the associated nonlinearity persists at the level of few quanta, where two qualitatively different regimes of photon antibunching are present for weak and strong single photon-trion coupling. We find that single photon emission from trion-polaritons becomes experimentally feasible in state-of-the-art transition metal dichalcogenide (TMD) setups. This can foster the development of quantum polaritonics using 2D monolayers as a material platform.
243 - M. Jang , C. Yang , I.M. Vellekoop 2016
We demonstrate experimentally that optical phase conjugation can be used to focus light through strongly scattering media even when far less than a photon per optical degree of freedom is detected. We found that the best achievable intensity contrast is equal to the total number of detected photons, as long as the resolution of the system is high enough. Our results demonstrate that phase conjugation can be used even when the photon budget is extremely low, such as in high-speed focusing through dynamic media, or imaging deep inside tissue.
We report on Kerr nonlinearity and dispersive optical bistability of a Fabry-Perot optical resonator due to the displacement of ultracold atoms trapped within. In the driven resonator, such collective motion is induced by optical forces acting upon up to $10^5$ $^{87}$Rb atoms prepared in the lowest band of a one-dimensional intracavity optical lattice. The longevity of atomic motional coherence allows for strongly nonlinear optics at extremely low cavity photon numbers, as demonstrated by the observation of both branches of optical bistability at photon numbers below unity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا