Do you want to publish a course? Click here

Searching with Quantum Computers

171   0   0.0 ( 0 )
 Added by Lov K. Grover
 Publication date 2000
  fields Physics
and research's language is English
 Authors Lov K. Grover




Ask ChatGPT about the research

This article introduces quantum computation by analogy with probabilistic computation. A basic description of the quantum search algorithm is given by representing the algorithm as a C program in a novel way.



rate research

Read More

109 - John Preskill 1997
The new field of quantum error correction has developed spectacularly since its origin less than two years ago. Encoded quantum information can be protected from errors that arise due to uncontrolled interactions with the environment. Recovery from errors can work effectively even if occasional mistakes occur during the recovery procedure. Furthermore, encoded quantum information can be processed without serious propagation of errors. Hence, an arbitrarily long quantum computation can be performed reliably, provided that the average probability of error per quantum gate is less than a certain critical value, the accuracy threshold. A quantum computer storing about 10^6 qubits, with a probability of error per quantum gate of order 10^{-6}, would be a formidable factoring engine. Even a smaller, less accurate quantum computer would be able to perform many useful tasks. (This paper is based on a talk presented at the ITP Conference on Quantum Coherence and Decoherence, 15-18 December 1996.)
Simulating chemical systems on quantum computers has been limited to a few electrons in a minimal basis. We demonstrate experimentally that the virtual quantum subspace expansion [Phys. Rev. X 10, 011004 (2020)] can achieve full basis accuracy for hydrogen and lithium dimers, comparable to simulations requiring twenty or more qubits. We developed an approach to minimize the impact of experimental noise on the stability of the generalized eigenvalue problem, a crucial component of the quantum algorithm. In addition, we were able to obtain an accurate potential energy curve for the nitrogen dimer in a quantum simulation on a classical computer.
Fluctuation relations allow for the computation of equilibrium properties, like free energy, from an ensemble of non-equilibrium dynamics simulations. Computing them for quantum systems, however, can be difficult, as performing dynamic simulations of such systems is exponentially hard on classical computers. Quantum computers can alleviate this hurdle, as they can efficiently simulate quantum systems. Here, we present an algorithm utilizing a fluctuation relation known as the Jarzynski equality to approximate free energy differences of quantum systems on a quantum computer. We discuss under which conditions our approximation becomes exact, and under which conditions it serves as a strict upper bound. Furthermore, we successfully demonstrate a proof-of-concept of our algorithm using the transverse field Ising model on a real quantum processor. The free energy is a central thermodynamic property that allows one to compute virtually any equilibrium property of a physical system. Thus, as quantum hardware continues to improve, our algorithm may serve as a valuable tool in a wide range of applications including the construction of phase diagrams, prediction of transport properties and reaction constants, and computer-aided drug design in the future.
Thermal properties of nanomaterials are crucial to not only improving our fundamental understanding of condensed matter systems, but also to developing novel materials for applications spanning research and industry alike. Since quantum effects arise at the nanomaterial scale, these systems are difficult to simulate on classical computers. Quantum computers, by contrast, can efficiently simulate quantum many-body systems. However, current algorithms for calculating thermal properties of these systems incur significant computational costs in that they either prepare the full thermal (i.e., mixed) state on the quantum computer, or else they must sample a number of pure states from a distribution that grows with system size. Canonical thermal pure quantum states provide a promising path to estimating thermal properties of quantum materials as they neither require preparation of the full thermal state nor require a large number of samples. Remarkably, fewer samples are required as the system size grows. Here, we present a method for preparing canonical TPQ states on quantum computers and demonstrate its efficacy in estimating thermal properties of quantum materials. Due to its increasing accuracy with system size, as well as its flexibility in implementation, we anticipate that this method will enable finite temperature explorations of relevant quantum materials on near-term quantum computers.
Symmetry is a unifying concept in physics. In quantum information and beyond, it is known that quantum states possessing symmetry are not useful for certain information-processing tasks. For example, states that commute with a Hamiltonian realizing a time evolution are not useful for timekeeping during that evolution, and bipartite states that are highly extendible are not strongly entangled and thus not useful for basic tasks like teleportation. Motivated by this perspective, this paper details several quantum algorithms that test the symmetry of quantum states and channels. For the case of testing Bose symmetry of a state, we show that there is a simple and efficient quantum algorithm, while the tests for other kinds of symmetry rely on the aid of a quantum prover. We prove that the acceptance probability of each algorithm is equal to the maximum symmetric fidelity of the state being tested, thus giving a firm operational meaning to these latter resource quantifiers. Special cases of the algorithms test for incoherence or separability of quantum states. We evaluate the performance of these algorithms by using the variational approach to quantum algorithms, replacing the quantum prover with a variational circuit. We also show that the maximum symmetric fidelities can be calculated by semi-definite programs, which is useful for benchmarking the performance of the quantum algorithms for sufficiently small examples. Finally, we establish various generalizations of the resource theory of asymmetry, with the upshot being that the acceptance probabilities of the algorithms are resource monotones and thus well motivated from the resource-theoretic perspective.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا