No Arabic abstract
We investigate coherence in one- and two-photon optical systems, both theoretically and experimentally. In the first case, we develop the density operator representing a single photon state subjected to a non-dissipative coupling between observed (polarization) and unobserved (frequency) degrees of freedom. We show that an implementation of ``bang-bang quantum control protects photon polarization information from certain types of decoherence. In the second case, we investigate the existence of a decoherence-free subspace of the Hilbert space of two-photon polarization states under the action of a similar coupling. The density operator representation is developed analytically and solutions are obtained numerically. NOTE: This manuscript is taken from the authors undergraduate thesis (A.B. Dartmouth College, June 2000, advised by Dr. Walter E. Lawrence), under the supervision of Dr. Paul G. Kwiat.
We show that temporal two-photon interference effects involving the signal and idler photons created by parametric down-conversion can be fully characterized in terms of the variations of two length parameters--called the biphoton path-length difference and the biphoton path-asymmetry- length difference--which we construct using the six different length parameters that a general two-photon interference experiment involves. We perform an experiment in which the effects of the variations of these two parameters can be independently controlled and studied. In our experimental setup, which does not involve mixing of signal and idler photons at a beam splitter, we further report observations of Hong-Ou-Mandel- (HOM-)like effects both in coincidence and in one-photon count rates. As an important consequence, we argue that the HOM and the HOM-like effects are best described as observations of how two-photon coherence changes as a function of the biphoton path- asymmetry-length difference.
Quantum coherence is one of the most intriguing applications of quantum mechanics, and has led to interesting phenomena and uncommon results. Here we show that in a stark contrast to the usual red-detuned condition to observe bistability in single-mode optomechanics, the optical intensities exhibit bistability for all values of cavity-laser detuning due to intermode coupling induced by the two-photon coherence. Interestingly, an unconventional bistability with ribbon-shaped hysteresis can be observed for blue-detuned laser frequencies. We also demonstrate that the two-photon coherence leads to a strong entanglement between the movable mirrors in the adiabatic regime. Surprisingly, the mirror-mirror entanglement is shown to persist for environment temperature of the phonon bath up to 12 K using experimental parameters.
Optimal control can be used to significantly improve multi-qubit gates in quantum information processing hardware architectures based on superconducting circuit quantum electrodynamics. We apply this approach not only to dispersive gates of two qubits inside a cavity, but, more generally, to architectures based on two-dimensional arrays of cavities and qubits. For high-fidelity gate operations, simultaneous evolutions of controls and couplings in the two coupling dimensions of cavity grids are shown to be significantly faster than conventional sequential implementations. Even under experimentally realistic conditions speedups by a factor of three can be gained. The methods immediately scale to large grids and indirect gates between arbitrary pairs of qubits on the grid. They are anticipated to be paradigmatic for 2D arrays and lattices of controllable qubits.
Quantum information technologies harness the intrinsic nature of quantum theory to beat the limitations of the classical methods for information processing and communication. Recently, the application of quantum features to metrology has attracted much attention. Quantum optical coherence tomography (QOCT), which utilizes two-photon interference between entangled photon pairs, is a promising approach to overcome the problem with optical coherence tomography (OCT): As the resolution of OCT becomes higher, degradation of the resolution due to dispersion within the medium becomes more critical. Here we report on the realization of 0.54 $mu$m resolution two-photon interference, which surpasses the current record resolution 0.75 $mu$m of low-coherence interference for OCT. In addition, the resolution for QOCT showed almost no change against the dispersion of a 1 mm thickness of water inserted in the optical path, whereas the resolution for OCT dramatically degrades. For this experiment, a highly-efficient chirped quasi-phase-matched lithium tantalate device was developed using a novel $`$nano-electrode-poling$$ technique. The results presented here represent a breakthrough for the realization of quantum protocols, including QOCT, quantum clock synchronization, and more. Our work will open up possibilities for medical and biological applications.
Single atoms absorb and emit light from a resonant laser beam photon by photon. We show that a single atom strongly coupled to an optical cavity can absorb and emit resonant photons in pairs. The effect is observed in a photon correlation experiment on the light transmitted through the cavity. We find that the atom-cavity system transforms a random stream of input photons into a correlated stream of output photons, thereby acting as a two-photon gateway. The phenomenon has its origin in the quantum anharmonicity of the energy structure of the atom-cavity system. Future applications could include the controlled interaction of two photons by means of one atom.