Do you want to publish a course? Click here

From systems biology to dynamical neuropharmacology: proposal for a new methodology

276   0   0.0 ( 0 )
 Added by Tam\\'as Kiss
 Publication date 2006
  fields Biology
and research's language is English




Ask ChatGPT about the research

The concepts and methods of Systems Biology are being extended to neuropharmacology, to test and design drugs against neurological and psychiatric disorders. Computational modeling by integrating compartmental neural modeling technique and detailed kinetic description of pharmacological modulation of transmitter-receptor interaction is offered as a method to test the electrophysiological and behavioral effects of putative drugs. Even more, an inverse method is suggested as a method for controlling a neural system to realize a prescribed temporal pattern. In particular, as an application of the proposed new methodology a computational platform is offered to analyze the generation and pharmacological modulation of theta rhythm related to anxiety is analyzed here in more detail.



rate research

Read More

Though it goes without saying that linear algebra is fundamental to mathematical biology, polynomial algebra is less visible. In this article, we will give a brief tour of four diverse biological problems where multivariate polynomials play a central role -- a subfield that is sometimes called algebraic biology. Namely, these topics include biochemical reaction networks, Boolean models of gene regulatory networks, algebraic statistics and genomics, and place fields in neuroscience. After that, we will summarize the history of discrete and algebraic structures in mathematical biology, from their early appearances in the late 1960s to the current day. Finally, we will discuss the role of algebraic biology in the modern classroom and curriculum, including resources in the literature and relevant software. Our goal is to make this article widely accessible, reaching the mathematical biologist who knows no algebra, the algebraist who knows no biology, and especially the interested student who is curious about the synergy between these two seemingly unrelated fields.
187 - G. Wu , W.Liao , S. Stramaglia 2012
A great improvement to the insight on brain function that we can get from fMRI data can come from effective connectivity analysis, in which the flow of information between even remote brain regions is inferred by the parameters of a predictive dynamical model. As opposed to biologically inspired models, some techniques as Granger causality (GC) are purely data-driven and rely on statistical prediction and temporal precedence. While powerful and widely applicable, this approach could suffer from two main limitations when applied to BOLD fMRI data: confounding effect of hemodynamic response function (HRF) and conditioning to a large number of variables in presence of short time series. For task-related fMRI, neural population dynamics can be captured by modeling signal dynamics with explicit exogenous inputs; for resting-state fMRI on the other hand, the absence of explicit inputs makes this task more difficult, unless relying on some specific prior physiological hypothesis. In order to overcome these issues and to allow a more general approach, here we present a simple and novel blind-deconvolution technique for BOLD-fMRI signal. Coming to the second limitation, a fully multivariate conditioning with short and noisy data leads to computational problems due to overfitting. Furthermore, conceptual issues arise in presence of redundancy. We thus apply partial conditioning to a limited subset of variables in the framework of information theory, as recently proposed. Mixing these two improvements we compare the differences between BOLD and deconvolved BOLD level effective networks and draw some conclusions.
Synthetic biology brings together concepts and techniques from engineering and biology. In this field, computer-aided design (CAD) is necessary in order to bridge the gap between computational modeling and biological data. An application named TinkerCell has been created in order to serve as a CAD tool for synthetic biology. TinkerCell is a visual modeling tool that supports a hierarchy of biological parts. Each part in this hierarchy consists of a set of attributes that define the part, such as sequence or rate constants. Models that are constructed using these parts can be analyzed using various C and Python programs that are hosted by TinkerCell via an extensive C and Python API. TinkerCell supports the notion of a module, which are networks with interfaces. Such modules can be connected to each other, forming larger modular networks. Because TinkerCell associates parameters and equations in a model with their respective part, parts can be loaded from databases along with their parameters and rate equations. The modular network design can be used to exchange modules as well as test the concept of modularity in biological systems. The flexible modeling framework along with the C and Python API allows TinkerCell to serve as a host to numerous third-party algorithms. TinkerCell is a free and open-source project under the Berkeley Software Distribution license. Downloads, documentation, and tutorials are available at www.tinkercell.com.
Computational intelligence is broadly defined as biologically-inspired computing. Usually, inspiration is drawn from neural systems. This article shows how to analyze neural systems using information theory to obtain constraints that help identify the algorithms run by such systems and the information they represent. Algorithms and representations identified information-theoretically may then guide the design of biologically inspired computing systems (BICS). The material covered includes the necessary introduction to information theory and the estimation of information theoretic quantities from neural data. We then show how to analyze the information encoded in a system about its environment, and also discuss recent methodological developments on the question of how much information each agent carries about the environment either uniquely, or redundantly or synergistically together with others. Last, we introduce the framework of local information dynamics, where information processing is decomposed into component processes of information storage, transfer, and modification -- locally in space and time. We close by discussing example applications of these measures to neural data and other complex systems.
122 - Bradly Alicea 2009
Recent developments in hybrid biological-technological systems (hybrid bionic systems) has made clear the need for evaluating ergonomic fit in such systems, especially as users first become adjusted to using such systems. This training is accompanied by physiological adaptation, and can be thought of computationally as a relative degree of matching between prosthetic devices, physiology, and behavior. Achieving performance augmentation involves two features of performance: a specific form of learning, memory, and mechanotransduction called sensorimotor learning, and physiological adaptation to novel physical information imposed by the augmented environment of hybrid bionic systems. A method borrowed from environmental medicine involving perturbing the environment for a range of internal physiological conditions was used to induce sensorimotor learning and memory associated physiological changes. In addition, features of the adult phenotype were considered as a mitigator of learning-related adaptations. Using a series of statistical tests and techniques, the results demonstrate than three forms of regulation are at work related to morphological, neural, and muscular control. A discussion of the conceptual relationship between homeostasis and adaptation will then be discussed in addition to potential applications to performance augmentation strategies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا