Do you want to publish a course? Click here

Response and fluctuations of a two-state signaling module with feedback

161   0   0.0 ( 0 )
 Added by Peter Borowski
 Publication date 2006
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

We study the stochastic kinetics of a signaling module consisting of a two-state stochastic point process with negative feedback. In the active state, a product is synthesized which increases the active-to-inactive transition rate of the process. We analyze this simple autoregulatory module using a path-integral technique based on the temporal statistics of state flips of the process. We develop a systematic framework to calculate averages, autocorrelations, and response functions by treating the feedback as a weak perturbation. Explicit analytical results are obtained to first order in the feedback strength. Monte Carlo simulations are performed to test the analytical results in the weak feedback limit and to investigate the strong feedback regime. We conclude by relating some of our results to experimental observations in the olfactory and visual sensory systems.



rate research

Read More

Zero-order ultrasensitivity (ZOU) is a long known and interesting phenomenon in enzyme networks. Here, a substrate is reversibly modified by two antagonistic enzymes (a push-pull system) and the fraction in modified state undergoes a sharp switching from near-zero to near-unity at a critical value of the ratio of the enzyme concentrations, under saturation conditions. ZOU and its extensions have been studied for several decades now, ever since the seminal paper of Goldbeter and Koshland (1981); however, a complete probabilistic treatment, important for the study of fluctuations in finite populations, is still lacking. In this paper, we study ZOU using a modular approach, akin to the total quasi-steady state approximation (tQSSA). This approach leads to a set of Fokker-Planck (drift-diffusion) equations for the probability distributions of the intermediate enzyme-bound complexes, as well as the modified/unmodified fractions of substrate molecules. We obtain explicit expressions for various average fractions and their fluctuations in the linear noise approximation (LNA). The emergence of a critical point for the switching transition is rigorously established. New analytical results are derived for the average and variance of the fractional substrate concentration in various chemical states in the near-critical regime. For the total fraction in the modified state, the variance is shown to be a maximum near the critical point and decays algebraically away from it, similar to a second-order phase transition. The new analytical results are compared with existing ones as well as detailed numerical simulations using a Gillespie algorithm.
Stochastic fluctuations of molecule numbers are ubiquitous in biological systems. Important examples include gene expression and enzymatic processes in living cells. Such systems are typically modelled as chemical reaction networks whose dynamics are governed by the Chemical Master Equation. Despite its simple structure, no analytic solutions to the Chemical Master Equation are known for most systems. Moreover, stochastic simulations are computationally expensive, making systematic analysis and statistical inference a challenging task. Consequently, significant effort has been spent in recent decades on the development of efficient approximation and inference methods. This article gives an introduction to basic modelling concepts as well as an overview of state of the art methods. First, we motivate and introduce deterministic and stochastic methods for modelling chemical networks, and give an overview of simulation and exact solution methods. Next, we discuss several approximation methods, including the chemical Langevin equation, the system size expansion, moment closure approximations, time-scale separation approximations and hybrid methods. We discuss their various properties and review recent advances and remaining challenges for these methods. We present a comparison of several of these methods by means of a numerical case study and highlight some of their respective advantages and disadvantages. Finally, we discuss the problem of inference from experimental data in the Bayesian framework and review recent methods developed the literature. In summary, this review gives a self-contained introduction to modelling, approximations and inference methods for stochastic chemical kinetics.
Signal transduction in biological cells is effected by signaling pathways that typically include multiple feedback loops. Here we analyze information transfer through a prototypical signaling module with biochemical feedback. The module switches stochastically between an inactive and active state; the input to the module governs the activation rate while the output (i.e., the product concentration) perturbs the inactivation rate. Using a novel perturbative approach, we compute the rate with which information about the input is gained from observation of the output. We obtain an explicit analytical result valid to first order in feedback strength and to second order in the strength of input. The total information gained during an extended time interval is found to depend on the feedback strength only through the total number of activation/inactivation events.
Genes and proteins regulate cellular functions through complex circuits of biochemical reactions. Fluctuations in the components of these regulatory networks result in noise that invariably corrupts the signal, possibly compromising function. Here, we create a practical formalism based on ideas introduced by Wiener and Kolmogorov (WK) for filtering noise in engineered communications systems to quantitatively assess the extent to which noise can be controlled in biological processes involving negative feedback. Application of the theory, which reproduces the previously proven scaling of the lower bound for noise suppression in terms of the number of signaling events, shows that a tetracycline repressor-based negative-regulatory gene circuit behaves as a WK filter. For the class of Hill-like nonlinear regulatory functions, this type of filter provides the optimal reduction in noise. Our theoretical approach can be readily combined with experimental measurements of response functions in a wide variety of genetic circuits, to elucidate the general principles by which biological networks minimize noise.
Single cell responses are shaped by the geometry of signaling kinetic trajectories carved in a multidimensional space spanned by signaling protein abundances. It is however challenging to assay large number (>3) of signaling species in live-cell imaging which makes it difficult to probe single cell signaling kinetic trajectories in large dimensions. Flow and mass cytometry techniques can measure a large number (4 - >40) of signaling species but are unable to track single cells. Thus cytometry experiments provide detailed time stamped snapshots of single cell signaling kinetics. Is it possible to use the time stamped cytometry data to reconstruct single cell signaling trajectories? Borrowing concepts of conserved and slow variables from non-equilibrium statistical physics we develop an approach to reconstruct signaling trajectories using snapshot data by creating new variables that remain invariant or vary slowly during the signaling kinetics. We apply this approach to reconstruct trajectories using snapshot data obtained from in silico simulations and live-cell imaging measurements. The use of invariants and slow variables to reconstruct trajectories provides a radically different way to track object using snapshot data. The approach is likely to have implications for solving matching problems in a wide range of disciplines.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا