We study a Langevin equation derived from the Michaelis-Menten (MM) phenomenological scheme for catalysis accompanying a spontaneous replication of molecules, which may serve as a simple model of cell-mediated immune surveillance against cancer. We examine how two different and statistically independent sources of noise - dichotomous multiplicative noise and additive Gaussian white noise - influence the populations extinction time. This quantity is identified as the mean first passage time of the system across the zero population state. We observe the effects of resonant activation (RA) and noise-enhanced stability (NES) and we report the evidence for competitive co-occurrence of both phenomena in a given regime of noise parameters. We discuss the statistics of first passage times in this regime and the role of different pseudo-potential profiles on the RA and NES phenomena. The RA/NES coexistence region brings an interesting interpretation for the growth kinetics of cancer cells population, as the NES effect enhancing the stability of the tumoral state becomes strongly reduced by the RA phenomenon.
We investigate a stochastic version of a simple enzymatic reaction which follows the generic Michaelis-Menten kinetics. At sufficiently high concentrations of reacting species, the molecular fluctuations can be approximated as a realization of a Brownian dynamics for which the model reaction kinetics takes on the form of a stochastic differential equation. After eliminating a fast kinetics, the model can be rephrased into a form of a one-dimensional overdamped Langevin equation. We discuss physical aspects of environmental noises acting in such a reduced system, pointing out the possibility of coexistence of dynamical regimes where noise-enhanced stability and resonant activation phenomena can be observed together.
In this paper we consider chemotherapy in a spatial model of tumor growth. The model, which is of reaction-diffusion type, takes into account the complex interactions between the tumor and surrounding stromal cells by including densities of endothelial cells and the extra-cellular matrix. When no treatment is applied the model reproduces the typical dynamics of early tumor growth. The initially avascular tumor reaches a diffusion limited size of the order of millimeters and initiates angiogenesis through the release of vascular endothelial growth factor (VEGF) secreted by hypoxic cells in the core of the tumor. This stimulates endothelial cells to migrate towards the tumor and establishes a nutrient supply sufficient for sustained invasion. To this model we apply cytostatic treatment in the form of a VEGF-inhibitor, which reduces the proliferation and chemotaxis of endothelial cells. This treatment has the capability to reduce tumor mass, but more importantly, we were able to determine that inhibition of endothelial cell proliferation is the more important of the two cellular functions targeted by the drug. Further, we considered the application of a cytotoxic drug that targets proliferating tumor cells. The drug was treated as a diffusible substance entering the tissue from the blood vessels. Our results show that depending on the characteristics of the drug it can either reduce the tumor mass significantly or in fact accelerate the growth rate of the tumor. This result seems to be due to complicated interplay between the stromal and tumor cell types and highlights the importance of considering chemotherapy in a spatial context.
We study metapopulation models for the spread of epidemics in which different subpopulations (cities) are connected by fluxes of individuals (travelers). This framework allows to describe the spread of a disease on a large scale and we focus here on the computation of the arrival time of a disease as a function of the properties of the seed of the epidemics and of the characteristics of the network connecting the various subpopulations. Using analytical and numerical arguments, we introduce an easily computable quantity which approximates this average arrival time. We show on the example of a disease spread on the world-wide airport network that this quantity predicts with a good accuracy the order of arrival of the disease in the various subpopulations in each realization of epidemic scenario, and not only for an average over realizations. Finally, this quantity might be useful in the identification of the dominant paths of the disease spread.
We investigate in detail the model of a trophic web proposed by Amaral and Meyer [Phys. Rev. Lett. 82, 652 (1999)]. We focused on small-size systems that are relevant for real biological food webs and for which the fluctuations are playing an important role. We show, using Monte Carlo simulations, that such webs can be non-viable, leading to extinction of all species in small and/or weakly coupled systems. Estimations of the extinction times and survival chances are also given. We show that before the extinction the fraction of highly-connected species (omnivores) is increasing. Viable food webs exhibit a pyramidal structure, where the density of occupied niches is higher at lower trophic levels, and moreover the occupations of adjacent levels are closely correlated. We also demonstrate that the distribution of the lengths of food chains has an exponential character and changes weakly with the parameters of the model. On the contrary, the distribution of avalanche sizes of the extinct species depends strongly on the connectedness of the web. For rather loosely connected systems we recover the power-law type of behavior with the same exponent as found in earlier studies, while for densely-connected webs the distribution is not of a power-law type.
The compartmentalization of distinct templates in protocells and the exchange of templates between them (migration) are key elements of a modern scenario for prebiotic evolution. Here we use the diffusion approximation of population genetics to study analytically the steady-state properties of such prebiotic scenario. The coexistence of distinct template types inside a protocell is achieved by a selective pressure at the protocell level (group selection) favoring protocells with a mixed template composition. In the degenerate case, where the templates have the same replication rate, we find that a vanishingly small migration rate suffices to eliminate the segregation effect of random drift and so to promote coexistence. In the non-degenerate case, a small migration rate greatly boosts coexistence as compared with the situation where there is no migration. However, increase of the migration rate beyond a critical value leads to the complete dominance of the more efficient template type (homogeneous regime). In this case, we find a continuous phase transition separating the homogeneous and the coexistence regimes, with the order parameter vanishing linearly with the distance to the transition point.
A. Ochab-Marcinek
,A. Fiasconaro
,E. Gudowska-Nowak
.
(2006)
.
"Coexistence of resonant activation and noise enhanced stability in a model of tumor-host interaction: Statistics of extinction times"
.
Anna Ochab-Marcinek
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا