Emergence of Complex Dynamics in a Simple Model of Signaling Networks


Abstract in English

A variety of physical, social and biological systems generate complex fluctuations with correlations across multiple time scales. In physiologic systems, these long-range correlations are altered with disease and aging. Such correlated fluctuations in living systems have been attributed to the interaction of multiple control systems; however, the mechanisms underlying this behavior remain unknown. Here, we show that a number of distinct classes of dynamical behaviors, including correlated fluctuations characterized by $1/f$-scaling of their power spectra, can emerge in networks of simple signaling units. We find that under general conditions, complex dynamics can be generated by systems fulfilling two requirements: i) a ``small-world topology and ii) the presence of noise. Our findings support two notable conclusions: first, complex physiologic-like signals can be modeled with a minimal set of components; and second, systems fulfilling conditions (i) and (ii) are robust to some degree of degradation, i.e., they will still be able to generate $1/f$-dynamics.

Download