1/f Scaling in Heart Rate Requires Antagonistic Autonomic Control


Abstract in English

We present the first systematic evidence for the origins of 1/f-type temporal scaling in human heart rate. The heart rate is regulated by the activity of two branches of the autonomic nervous system: the parasympathetic (PNS) and the sympathetic (SNS) nervous systems. We examine alterations in the scaling property when the balance between PNS and SNS activity is modified, and find that the relative PNS suppression by congestive heart failure results in a substantial increase in the Hurst exponent H towards random walk scaling $1/f^{2}$ and a similar breakdown is observed with relative SNS suppression by primary autonomic failure. These results suggest that 1/f scaling in heart rate requires the intricate balance between the antagonistic activity of PNS and SNS.

Download