Do you want to publish a course? Click here

Lock-in detection using a cryogenic low noise looped current preamplifier for the readout of resistive bolometers

72   0   0.0 ( 0 )
 Added by Dominique Yvon
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

We implemented a low noise current preamplifier for the readout of resistive bolometers. We tested the apparatus on thermometer resistances ranging from 10 Ohm to 500 Mohm. The use of current preamplifier overcomes constraints introduced by the readout time constant due to the thermometer resistance and the input capacitance. Using cold JFETs, this preamplifier board is shown to have very low noise: the Johnson noise of the source resistor (1 fA/Hz1/2) dominated in our noise measurements. We also implemented a lock-in chain using this preamplifier. Because of fast risetime, compensation of the phase shift may be unnecessary. If implemented, no tuning is necessary when the sensor impedance changes. Transients are very short, and thus low-passing or sampling of the signal is simplified. In case of spurious noise, the modulation frequency can be chosen in a much wider frequency range, without requiring a new calibration of the apparatus.



rate research

Read More

137 - R.A. Ryan , F. Wauters , F.E. Gray 2014
The central detector in the MuSun experiment is a pad-plane time projection ionization chamber that operates without gas amplification in deuterium at 31 K; it is used to measure the rate of the muon capture process $mu^- + d rightarrow n + n + u_mu$. A new charge-sensitive preamplifier, operated at 140 K, has been developed for this detector. It achieved a resolution of 4.5 keV(D$_2$) or 120 $e^-$ RMS with zero detector capacitance at 1.1 $mu$s integration time in laboratory tests. In the experimental environment, the electronic resolution is 10 keV(D$_2$) or 250 $e^-$ RMS at a 0.5 $mu$s integration time. The excellent energy resolution of this amplifier has enabled discrimination between signals from muon-catalyzed fusion and muon capture on chemical impurities, which will precisely determine systematic corrections due to these processes. It is also expected to improve the muon tracking and determination of the stopping location.
Precise characterization of detector time resolution is of crucial importance for next-generation cryogenic-bolometer experiments searching for neutrinoless double-beta decay, such as CUPID, in order to reject background due to pile-up of two-neutrino double-beta decay events. In this paper, we describe a technique developed to study the pile-up rejection capability of cryogenic bolometers. Our approach, which consists of producing controlled pile-up events with a programmable waveform generator, has the benefit that we can reliably and reproducibly control the time separation and relative energy of the individual components of the generated pile-up events. The resulting data allow us to optimize and benchmark analysis strategies to discriminate between individual and pile-up pulses. We describe a test of this technique performed with a small array of detectors at the Laboratori Nazionali del Gran Sasso, in Italy; we obtain a 90% rejection efficiency against pulser-generated pile-up events with rise time of ~15ms down to time separation between the individual events of about 2ms.
We measure the current noise of several cryogenic cables in a pulse tube based dilution refrigerator at frequencies between about 1~mHz and 50~kHz. We show that vibration-induced noise can be efficiently suppressed by using vacuum-insulated cables between room temperature and the 2nd pulse tube stage. A noise peak below 4 fA at the 1.4~Hz operation frequency of the pulse tube, and a white noise density of 0.44 fA/sqrt{Hz} in the millihertz range are obtained.
A wide-band current preamplifier based on a composite operational amplifier is proposed. It has been shown that the bandwidth of the preamplifier can be significantly increased by enhancing the effective open-loop gain of the composite preamplifier. The described preamplifier with current gain 10$^7$ V/A showed the bandwidth of about 100 kHz with 1 nF input shunt capacitance. The current noise of the amplifier was measured to be about 46 fA/$sqrt{rm Hz}$ at 1 kHz, close to the design noise minimum. The voltage noise was found to be about 2.9 nV/$sqrt{rm Hz}$ at 1 kHz, which is in a good agreement with the value expected for the operational amplifier used in the input stage. By analysing the total noise produced by the preamplifier we found the optimal frequency range suitable for the fast lock-in measurements to be from 1 kHz to 2 kHz. To get the same signal-to-noise ratio, the reported preamplifier requires roughly 10% of the integration time used in measurements made with a conventional preamplifier.
In this study we present first results from a new detector of UV photons: a thick gaseous electron multiplier (GEM) with resistive electrodes, combined with CsI or CsTe/CsI photocathodes. The hole type structure considerably suppresses the photon and ion feedback, whereas the resistive electrodes protect the detector and the readout electronics from damage by any eventual discharges. This device reaches higher gains than a previously developed photosensitive RPC and could be used not only for the imaging of UV sources, flames or Cherenkov light, for example, but also for the detection of X-rays and charged particles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا