Do you want to publish a course? Click here

A Compton Backscattering Polarimeter for Measuring Longitudinal Electron Polarization

216   0   0.0 ( 0 )
 Added by Igor Passchier
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

Compton backscattering polarimetry provides a fast and accurate method to measure the polarization of an electron beam in a storage ring. Since the method is non-destructive, the polarization of the electron beam can be monitored during internal target experiments. For this reason, a Compton polarimeter has been constructed at NIKHEF to measure the polarization of the longitudinally polarized electrons which can be stored in the AmPS ring. The design and results of the polarimeter, the first Compton polarimeter to measure the polarization of a stored longitudinally polarized electron beam directly, are presented in this paper.



rate research

Read More

Compton backscattering polarimetry provides a fast measurement of the polarization of an electron beam in a storage ring. Since the method is non-destructive, the polarization of the electrons can be monitored during internal target experiments. At NIKHEF a Compton polarimeter has been constructed to measure the polarization of the longitudinally polarized electrons stored in the AmPS ring. First results obtained with the polarimeter, the first Compton polarimeter to measure the polarization of a stored longitudinally polarized electron beam, are presented in this paper.
A calorimetric polarimeter based on inorganic LYSO scintillators is described. It has been designed for use in a storage ring to search for electric dipole moments (EDM) of charged particles such as the proton and deuteron. Its development and first use was on the Cooler Synchrotron (COSY) at the Forschungszentrum Julich with 0.97 GeV/c polarized deuterons, a particle and energy suitable for an EDM search. The search requires a polarimeter with high efficiency, large analyzing power, and stable operating characteristics. With typical beam momenta of about 1 GeV/c, the scattering of protons or deuterons from a carbon target into forward angles becomes a nearly optimal choice of an analyzing reaction. The polarimeter described here consists of 52 LYSO detector modules, arranged in 4 symmetric blocks (up, down, left, right) for energy determination behind plastic scintillators for particle identification via energy loss. The commissioning results of the current setup demonstrate that the polarimeter is ready to be employed in a first direct search for an EDM on the deuteron, which is planned at COSY in the next two years.
In this paper we present a method of scintillation detector energy calibration using the gamma-rays. The technique is based on the Compton scattering of gamma-rays in a scintillation detector and subsequent photoelectric absorption of the scattered photon in the Ge-detector. The novelty of this method is that the source of gamma rays, the germanium and scintillation detectors are immediately arranged adjacent to each other. The method presents an effective solution for the detectors consisting of a low atomic number materials, when the ratio between Compton effect and photoelectric absorption is large and the mean path of gamma-rays is comparable to the size of the detector. The technique can be used for the precision measurements of the scintillator light yield dependence on the electron energy.
A wide range of nucleon and nuclear structure experiments in Jefferson Labs Hall A require precise, continuous measurements of the polarization of the electron beam. In our Compton polarimeter, electrons are scattered off photons in a Fabry-Perot cavity; by measuring an asymmetry in the integrated signal of the scattered photons detected in a GSO crystal, we can make non-invasive, continuous measurements of the beam polarization. Our goal is to achieve 1% statistical error within two hours of running. We discuss the design and commissioning of an upgrade to this apparatus, and report preliminary results for experiments conducted at beam energies from 3.5 to 5.9 GeV and photon rates from 5 to 100 kHz.
In spite of extensive observations and numerous theoretical studies in the past decades several key questions related with Gamma-Ray Bursts (GRB) emission mechanisms are still to be answered. Precise detection of the GRB polarization carried out by dedicated instruments can provide new data and be an ultimate tool to unveil their real nature. A novel space-borne Compton polarimeter POLAR onboard the Chinese space station TG2 is designed to measure linear polarization of gamma-rays arriving from GRB prompt emissions. POLAR uses plastics scintillator bars (PS) as gamma-ray detectors and multi-anode photomultipliers (MAPMTs) for readout of the scintillation light. Inherent properties of such detection systems are crosstalk and non-uniformity. The crosstalk smears recorded energy over multiple channels making both non-uniformity corrections and energy calibration more difficult. Rigorous extraction of polarization observable requires to take such effects properly into account. We studied influence of the crosstalk on energy depositions during laboratory measurements with X-ray beams. A relation between genuine and recorded energy was deduced using an introduced model of data analysis. It postulates that both the crosstalk and non-uniformities can be described with a single matrix obtained in calibrations with mono-energetic X- and gamma-rays. Necessary corrections are introduced using matrix based equations allowing for proper evaluation of the measured GRB spectra. Validity of the method was established during dedicated experimental tests. The same approach can be also applied in space utilizing POLAR internal calibration sources. The introduced model is general and with some adjustments well suitable for data analysis from other MAPMT-based instruments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا