Comptonization is the process in which photon spectrum changes due to multiple Compton scatterings in the electronic plasma. It plays an important role in the spectral formation of astrophysical X-ray and gamma-ray sources. There are several intrinsic limitations for the analytical method in dealing with the Comptonization problem and Monte Carlo simulation is one of the few alternatives. We describe an efficient Monte Carlo method that can solve the Comptonization problem in a fully relativistic way. We expanded the method so that it is capable of simulating Comptonization in the media where electron density and temperature varies discontinuously from one region to the other and in the isothermal media where density varies continuously along photon paths. The algorithms are presented in detail to facilitate computer code implementation. We also present a few examples of its application to the astrophysical research.
Monte Carlo simulations are widely used in many areas including particle accelerators. In this lecture, after a short introduction and reviewing of some statistical backgrounds, we will discuss methods such as direct inversion, rejection method, and Markov chain Monte Carlo to sample a probability distribution function, and methods for variance reduction to evaluate numerical integrals using the Monte Carlo simulation. We will also briefly introduce the quasi-Monte Carlo sampling at the end of this lecture.
An inhomogeneous backflow transformation for many-particle wave functions is presented and applied to electrons in atoms, molecules, and solids. We report variational and diffusion quantum Monte Carlo VMC and DMC energies for various systems and study the computational cost of using backflow wave functions. We find that inhomogeneous backflow transformations can provide a substantial increase in the amount of correlation energy retrieved within VMC and DMC calculations. The backflow transformations significantly improve the wave functions and their nodal surfaces.
Several models for the Monte Carlo simulation of Compton scattering on electrons are quantitatively evaluated with respect to a large collection of experimental data retrieved from the literature. Some of these models are currently implemented in general purpose Monte Carlo systems; some have been implemented and evaluated for possible use in Monte Carlo particle transport for the first time in this study. Here we present first and preliminary results concerning total and differential Compton scattering cross sections.
We present a lattice Monte Carlo algorithm based on the one originally proposed by Maggs and Rossetto for simulating electrostatic interactions in inhomogeneous dielectric media. The original algorithm is known to produce attractive interactions between particles of the same dielectric constant in the medium of different dielectric constant. We demonstrate that such interactions are spurious, caused by incorrectly biased statistical weight arising from particle motion during the Monte Carlo moves. We propose a simple parallel tempering algorithm that corrects this unphysical bias. The efficacy of our algorithm is tested on a simple binary mixture and on an uncharged polymer in a solvent, and applied to salt-doped polymer solutions.
In this work we demonstrate the usage of the VegasFlow library on multidevice situations: multi-GPU in one single node and multi-node in a cluster. VegasFlow is a new software for fast evaluation of highly parallelizable integrals based on Monte Carlo integration. It is inspired by the Vegas algorithm, very often used as the driver of cross section integrations and based on Googles powerful TensorFlow library. In this proceedings we consider a typical multi-GPU configuration to benchmark how different batch sizes can increase (or decrease) the performance on a Leading Order example integration.