Greens matrix from Jacobi-matrix Hamiltonian


Abstract in English

We propose two ways for determining the Greens matrix for problems admitting Hamiltonians that have infinite symmetric tridiagonal (i.e. Jacobi) matrix form on some basis representation. In addition to the recurrence relation comming from the Jacobi-matrix, the first approach also requires the matrix elements of the Greens operator between the first elements of the basis. In the second approach the recurrence relation is solved directly by continued fractions and the solution is continued analytically to the whole complex plane. Both approaches are illustrated with the non-trivial but calculable example of the D-dimensional Coulomb Greens matrix. We give the corresponding formulas for the D-dimensional harmonic oscillator as well.

Download