No Arabic abstract
In the development of multiscale biological models it is crucial to establish a connection between discrete microscopic or mesoscopic stochastic models and macroscopic continuous descriptions based on cellular density. In this paper a continuous limit of a two-dimensional Cellular Potts Model (CPM) with excluded volume is derived, describing cells moving in a medium and reacting to each other through both direct contact and long range chemotaxis. The continuous macroscopic model is obtained as a Fokker-Planck equation describing evolution of the cell probability density function. All coefficients of the general macroscopic model are derived from parameters of the CPM and a very good agreement is demonstrated between CPM Monte Carlo simulations and numerical solution of the macroscopic model. It is also shown that in the absence of contact cell-cell interactions, the obtained model reduces to the classical macroscopic Keller-Segel model. General multiscale approach is demonstrated by simulating spongy bone formation from loosely packed mesenchyme via the intramembranous route suggesting that self-organizing physical mechanisms can account for this developmental process.
Even in the steady-state, the number of biomolecules in living cells fluctuates dynamically; and the frequency spectrum of this chemical fluctuation carries valuable information about the mechanism and the dynamics of the intracellular reactions creating these biomolecules. Although recent advances in single-cell experimental techniques enable the direct monitoring of the time-traces of the biological noise in each cell, the development of the theoretical tools needed to extract the information encoded in the stochastic dynamics of intracellular chemical fluctuation is still in its adolescence. Here, we present a simple and general equation that relates the power-spectrum of the product number fluctuation to the product lifetime and the reaction dynamics of the product creation process. By analyzing the time traces of the protein copy number using this theory, we can extract the power spectrum of the mRNA number, which cannot be directly measured by currently available experimental techniques. From the power spectrum of the mRNA number, we can further extract quantitative information about the transcriptional regulation dynamics. Our power spectrum analysis of gene expression noise is demonstrated for the gene network model of luciferase expression under the control of the Bmal 1a promoter in mouse fibroblast cells. Additionally, we investigate how the non-Poisson reaction dynamics and the cell-to-cell heterogeneity in transcription and translation affect the power-spectra of the mRNA and protein number.
Spectacular collective phenomena such as jamming, turbulence, wetting, and waves emerge when living cells migrate in groups.
Cell migration and mechanics are tightly regulated by the integrated activities of the various cytoskeletal networks. In cancer cells, cytoskeletal modulations have been implicated in the loss of tissue integrity, and acquisition of an invasive phenotype. In epithelial cancers, for example, increased expression of the cytoskeletal filament protein vimentin correlates with metastatic potential. Nonetheless, the exact mechanism whereby vimentin affects cell motility remains poorly understood. In this study, we measured the effects of vimentin expression on the mechano-elastic and migratory properties of the highly invasive breast carcinoma cell line MDA231. We demonstrate here that vimentin stiffens cells and enhances cell migration in dense cultures, but exerts little or no effect on the migration of sparsely plated cells. These results suggest that cell-cell interactions play a key role in regulating cell migration, and coordinating cell movement in dense cultures. Our findings pave the way towards understanding the relationship between cell migration and mechanics, in a biologically relevant context.
Adherent cells exert traction forces on to their environment, which allows them to migrate, to maintain tissue integrity, and to form complex multicellular structures. This traction can be measured in a perturbation-free manner with traction force microscopy (TFM). In TFM, traction is usually calculated via the solution of a linear system, which is complicated by undersampled input data, acquisition noise, and large condition numbers for some methods. Therefore, standard TFM algorithms either employ data filtering or regularization. However, these approaches require a manual selection of filter- or regularization parameters and consequently exhibit a substantial degree of subjectiveness. This shortcoming is particularly serious when cells in different conditions are to be compared because optimal noise suppression needs to be adapted for every situation, which invariably results in systematic errors. Here, we systematically test the performance of new methods from computer vision and Bayesian inference for solving the inverse problem in TFM. We compare two classical schemes, L1- and L2-regularization, with three previously untested schemes, namely Elastic Net regularization, Proximal Gradient Lasso, and Proximal Gradient Elastic Net. Overall, we find that Elastic Net regularization, which combines L1 and L2 regularization, outperforms all other methods with regard to accuracy of traction reconstruction. Next, we develop two methods, Bayesian L2 regularization and Advanced Bayesian L2 regularization, for automatic, optimal L2 regularization. Using artificial data and experimental data, we show that these methods enable robust reconstruction of traction without requiring a difficult selection of regularization parameters specifically for each data set. Thus, Bayesian methods can mitigate the considerable uncertainty inherent in comparing cellular traction forces.
Contact inhibition is the process by which cells switch from a motile growing state to a passive and stabilized state upon touching their neighbors. When two cells touch, an adhesion link is created between them by means of transmembrane E-cadherin proteins. Simultaneously, their actin filaments stop polymerizing in the direction perpendicular to the membrane and reorganize to create an apical belt that colocalizes with the adhesion links. Here, we propose a detailed quantitative model of the role of the cytoplasmic $beta$-catenin and $alpha$-catenin proteins in this process, treated as a reaction-diffusion system. Upon cell-cell contact, the concentration in $alpha$-catenin dimers increases, inhibiting actin branching and thereby reducing cellular motility and expansion pressure. This model provides a mechanism for contact inhibition that could explain previously unrelated experimental findings on the role played by E-cadherin, $beta$-catenin and $alpha$-catenin in the cellular phenotype and in tumorigenesis. In particular, we address the effect of a knockout of the adenomatous polyposis coli tumor suppressor gene. Potential direct tests of our model are discussed.