Imperfections in the surface of intracavity elements of an optical ring resonator can scatter light from one mode into the counterpropagating mode. The phase-locking of the cavity modes induced by this backscattering is a well-known example that notoriously afflicts laser gyroscopes and similar active systems. We experimentally show how backscattering can be circumvented in a unidirectionally operated ring cavity either by an appropriate choice of the resonant cavity mode or by active feedback control.