Do you want to publish a course? Click here

Measurement of the Scintillation Efficiency of Na Recoils in NaI(Tl) down to 10 keV Nuclear Recoil Energy relevant to Dark Matter Searches

63   0   0.0 ( 0 )
 Added by Hassan Chagani
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present preliminary results of measurements of the quenching factor for Na recoils in NaI(Tl) at room temperature, made at a dedicated neutron facility at the University of Sheffield. Measurements have been performed with a 2.45 MeV mono-energetic neutron generator in the energy range from 10 keV to 100 keV nuclear recoil energy. A BC501A liquid scintillator detector was used to tag neutrons. Cuts on pulse-shape discrimination from the BC501A liquid scintillator detector and neutron time-of-flight were performed on pulses recorded by a digitizer with a 2 ns sampling time. Measured quenching factors range from 19% to 26%, in agreement with other experiments. From pulse-shape analysis, a mean time of pulses from electron and nuclear recoils are compared down to 2 keV electron equivalent energy.



rate research

Read More

Measurements of the quenching factor for sodium recoils in a 5 cm diameter NaI(Tl) crystal at room temperature have been made at a dedicated neutron facility at the University of Sheffield. The crystal has been exposed to 2.45 MeV mono-energetic neutrons generated by a Sodern GENIE 16 neutron generator, yielding nuclear recoils of energies between 10 and 100 keVnr. A cylindrical BC501A detector has been used to tag neutrons that scatter off sodium nuclei in the crystal. Cuts on pulse shape and time of flight have been performed on pulses recorded by an Acqiris DC265 digitiser with a 2 ns sampling time. Measured quenching factors of Na nuclei range from 19% to 26% in good agreement with other experiments, and a value of 25.2 pm 6.4% has been determined for 10 keV sodium recoils. From pulse shape analysis, the mean times of pulses from electron and nuclear recoils have been compared down to 2 keVee. The experimental results are compared to those predicted by Lindhard theory, simulated by the SRIM Monte Carlo code, and a preliminary curve calculated by Prof. Akira Hitachi.
Liquid Xenon (LXe) is an excellent material for experiments designed to detect dark matter in the form of Weakly Interacting Massive Particles (WIMPs). A low energy detection threshold is essential for a sensitive WIMP search. The understanding of the relative scintillation efficiency (Leff) and ionization yield of low energy nuclear recoils in LXe is limited for energies below 10 keV. In this paper, we present new measurements that extend the energy down to 4 keV, finding that Leff decreases with decreasing energy. We also measure the quenching of scintillation efficiency due to the electric field in LXe, finding no significant field dependence.
We present the first detailed simulations of the head-tail effect relevant to directional Dark Matter searches. Investigations of the location of the majority of the ionization charge as being either at the beginning half (tail) or at the end half (head) of the nuclear recoil track were performed for carbon and sulphur recoils in 40 Torr negative ion carbon disulfide and for fluorine recoils in 100 Torr carbon tetrafluoride. The SRIM simulation program was used, together with a purpose-written Monte Carlo generator, to model production of ionizing pairs, diffusion and basic readout geometries relevant to potential real detector scenarios, such as under development for the DRIFT experiment. The results clearly indicate the existence of a head-tail track asymmetry but with a magnitude critically influenced by two competing factors: the nature of the stopping power and details of the range straggling. The former tends to result in the tail being greater than the head and the latter the reverse.
424 - E. Aprile , L. Baudis , B. Choi 2010
Liquid xenon is an important detection medium in direct dark matter experiments, which search for low-energy nuclear recoils produced by the elastic scattering of WIMPs with quarks. The two existing measurements of the relative scintillation efficiency of nuclear recoils below 20 keV lead to inconsistent extrapolations at lower energies. This results in a different energy scale and thus sensitivity reach of liquid xenon dark matter detectors. We report a new measurement of the relative scintillation efficiency below 10 keV performed with a liquid xenon scintillation detector, optimized for maximum light collection. Greater than 95% of the interior surface of this detector was instrumented with photomultiplier tubes, giving a scintillation yield of 19.6 photoelectrons/keV electron equivalent for 122 keV gamma rays. We find that the relative scintillation efficiency for nuclear recoils of 5 keV is 0.14, staying constant around this value up to 10 keV. For higher energy recoils we measure a value around 20%, consistent with previously reported data. In light of this new measurement, the XENON10 experiments results on spin-independent WIMP-nucleon cross section, which were calculated assuming a constant 0.19 relative scintillation efficiency, change from $8.8times10^{-44}$ cm$^2$ to $9.9times10^{-44}$ cm$^2$ for WIMPs of mass 100 GeV/c$^2$, and from $4.4times10^{-44}$ cm$^2$ to $5.6times10^{-44}$ cm$^2$ for WIMPs of mass 30 GeV/c$^2$.
72 - H.W.Joo , H.S.Park , J.H.Kim 2018
Scintillation crystals are commonly used for direct detection of weakly interacting massive particles (WIMPs), which are suitable candidates for a particle dark matter. It is well known that the scintillation light yields are different for electron recoil and nuclear recoil. To calibrate the energies of WIMP-induced nuclear recoil signals, the quenching factor (QF) needs to be measured, which is the light yield ratio of the nuclear recoil to electron recoil. Measurements of the QFs for Na and I recoils in a small (2 cm x 2 cm x 1.5 cm) NaI(Tl) crystal are performed with 2.43-MeV mono-energetic neutrons generated by deuteron-deuteron fusion. Depending on the scattering angle of the neutrons, the energies of the recoiled ions vary in the range of 9 - 152 keV for Na and 19 - 75 keV for I. The QFs of Na are measured at 9 points with values in the range of 10 - 23 % while those of I are measured at 4 points with values in the range of 4 - 6 %.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا