No Arabic abstract
We present a systematic and physically motivated characterization of incoherent or coherent electric and magnetic fields, as measured for instance by the low frequency receiver on-board the Solar Orbiter spacecraft. The characterization utilizes the 36 auto/cross correlations of the 3+3 complex Cartesian components of the electric and magnetic fields; hence, they are second order in the field strengths and so have physical dimension energy density. Although such 6x6 correlation matrices have been successfully employed on previous space missions, they are not physical quantities; because they are not manifestly space-time tensors. In this paper we propose a systematic representation of the 36 degrees-of-freedom of partially coherent electromagnetic fields as a set of manifestly covariant space-time tensors, which we call the Canonical Electromagnetic Observables (CEO). As an example, we apply this formalism to analyze real data from a chorus emission in the mid-latitude magnetosphere, as registered by the STAFF-SA instrument on board the Cluster-II spacecraft. We find that the CEO analysis increases the amount of information that can be extracted from the STAFF-SA dataset; for instance, the reactive energy flux density, which is one of the CEO parameters, identifies the source region of electromagnetic emissions more directly than the active energy (Poynting) flux density alone.
Solar Orbiter was launched on February 10, 2020 with the purpose of investigating solar and heliospheric physics using a payload of instruments designed for both remote and in-situ sensing. Similar to the recently launched Parker Solar Probe, and unlike earlier missions, Solar Orbiter carries instruments designed to measure the low frequency DC electric fields. In this paper we assess the quality of the low-frequency DC electric field measured by the Radio and Plasma Waves instrument (RPW) on Solar Orbiter. In particular we investigate the possibility of using Solar Orbiters DC electric and magnetic field data to estimate the solar wind speed. We use deHoffmann-Teller (HT) analysis based on measurements of the electric and magnetic fields to find the velocity of solar wind current sheets which minimizes a single component of the electric field. By comparing the HT velocity to proton velocity measured by the Proton and Alpha particle Sensor (PAS) we develop a simple model for the effective antenna length, $L_text{eff}$ of the E-field probes. We then use the HT method to estimate the speed of the solar wind. Using the HT method, we find that the observed variations in $E_y$ are often in excellent agreement with the variations in the magnetic field. The magnitude of $E_y$, however, is uncertain due to the fact that the $L_text{eff}$ depends on the plasma environment. We derive an empirical model relating $L_text{eff}$ to the Debye length, which we can use to improve the estimate of $E_y$ and consequently the estimated solar wind speed. The low frequency electric field provided by RPW is of high quality. Using deHoffmann-Teller analysis, Solar Orbiters magnetic and electric field measurements can be used to estimate the solar wind speed when plasma data is unavailable.
We present a new characterization of partially coherent electric and magnetic wave vector fields.This characterization is based on the 36 auto/cross correlations of the 3+3 complex Cartesian components of the electric and magnetic wave fields and is particularly suited for analyzing electromagnetic wave data on board spacecraft. Data from spacecraft based electromagnetic wave instruments are usually processed as data arrays. These data arrays however do not have a physical interpretation in themselves; they are simply a convenient storage format. In contrast, the characterization proposed here contains exactly the same information but are in the form of manifestly covariant space-time tensors. We call this data format the Canonical Electromagnetic Observables (CEO) since they correspond to unique physical observables. Some of them are already known, such as energy density, Poynting flux, stress tensor, etc, while others should be relevant in future space research. As an example we use this formalism to analyze data from a chorus emission in the mid-latitude magnetosphere, as recorded by the STAFF-SA instrument on board the Cluster-II spacecraft.
Fluctuations of solar wind magnetic field and plasma parameters exhibit a typical turbulence power spectrum with a spectral index ranging between $sim -5/3$ and $sim -3/2$. In particular, at $1$ AU, the magnetic field spectrum, observed within fast corotating streams, also shows a clear steepening for frequencies higher than the typical proton scales, of the order of $sim 3times10^{-1}$ Hz, and a flattening towards $1/f$ at frequencies lower than $sim 10^{-3}$ Hz. However, the current literature reports observations of the low-frequency break only for fast streams. Slow streams, as observed to date, have not shown a clear break, and this has commonly been attributed to slow wind intervals not being long enough. Actually, because of the longer transit time from the Sun, slow wind turbulence would be older and the frequency break would be shifted to lower frequencies with respect to fast wind. Based on this hypothesis, we performed a careful search for long-lasting slow wind intervals throughout $12$ years of Wind satellite measurements. Our search, based on stringent requirements not only on wind speed but also on the level of magnetic compressibility and Alfvenicity of the turbulent fluctuations, yielded $48$ slow wind streams lasting longer than $7$ days. This result allowed us to extend our study to frequencies sufficiently low and, for the first time in the literature, we are able to show that the $1/f$ magnetic spectral scaling is also present in the slow solar wind, provided the interval is long enough. However, this is not the case for the slow wind velocity spectrum, which keeps the typical Kolmogorov scaling throughout the analysed frequency range. After ruling out the possible role of compressibility and Alfvenicity for the 1/f scaling, a possible explanation in terms of magnetic amplitude saturation, as recently proposed in the literature, is suggested.
Microinstabilities and waves excited at moderate-Mach-number perpendicular shocks in the near-Sun solar wind are investigated by full particle-in-cell (PIC) simulations. By analyzing the dispersion relation of fluctuating field components directly issued from the shock simulation, we obtain key findings concerning wave excitations at the shock front: (1) at the leading edge of the foot, two types of electrostatic (ES) waves are observed. The relative drift of the reflected ions versus the electrons triggers an electron cyclotron drift instability (ECDI) which excites the first ES wave. Because the bulk velocity of gyro-reflected ions shifts to the direction of the shock front, the resulting ES wave propagates oblique to the shock normal. Immediately, a fraction of incident electrons are accelerated by this ES wave and a ring-like velocity distribution is generated. They can couple with the hot Maxwellian core and excite the second ES wave around the upper hybrid frequency. (2) from the middle of the foot all the way to the ramp, electrons can couple with both incident and reflected ions. ES waves excited by ECDI in different directions propagate across each other. Electromagnetic (EM) waves (X mode) emitted toward upstream are observed in both regions. They are probably induced by a small fraction of relativistic electrons. Results shed new insight on the mechanism for the occurrence of ES wave excitations and possible EM wave emissions at young CME-driven shocks in the near-Sun solar wind.
Impacts of dust grains on spacecraft are known to produce typical impulsive signals in the voltage waveform recorded at the terminals of electric antennas. Such signals are routinely detected by the Time Domain Sampler (TDS) system of the Radio and Plasma Waves (RPW) instrument aboard Solar Orbiter. We investigate the capabilities of RPW in terms of interplanetary dust studies and present the first analysis of dust impacts recorded by this instrument. We discuss previously developed models of voltage pulses generation after a dust impact onto a spacecraft and present the relevant technical parameters for Solar Orbiter RPW as a dust detector. Then we present the statistical analysis of the dust impacts recorded by RPW/TDS from April 20th, 2020 to February 27th, 2021 between 0.5 AU and 1 AU. The study shows that the dust population studied presents a radial velocity component directed outward from the Sun, the order of magnitude of which can be roughly estimated as $v_{r, dust} simeq 50$ km.$s^{-1}$. This is consistent with the flux of impactors being dominated by $beta$-meteoroids. We estimate the cumulative flux of these grains at 1 AU to be roughly $F_beta simeq 8times 10^{-5} $ m$^{-2}$s$^{-1}$, for particles of radius $r gtrsim 100$ nm. The power law index $delta$ of the cumulative mass flux of the impactors is evaluated by two differents methods (direct observations of voltage pulses and indirect effect on the impact rate dependency on the impact speed). Both methods give a result $delta simeq 0.3-0.4$. Solar Orbiter RPW proves to be a suitable instrument for interplanetary dust studies. These first results are promising for the continuation of the mission, in particular for the in-situ study of the dust cloud outside the ecliptic plane, which Solar Orbiter will be the first spacecraft to explore.