No Arabic abstract
Using a data set which includes all transactions among banks in the Italian money market, we study their trading strategies and the dependence among them. We use the Fourier method to compute the variance-covariance matrix of trading strategies. Our results indicate that well defined patterns arise. Two main communities of banks, which can be coarsely identified as small and large banks, emerge.
Interbank markets are fundamental for bank liquidity management. In this paper, we introduce a model of interbank trading with memory. Our model reproduces features of preferential trading patterns in the e-MID market recently empirically observed through the method of statistically validated networks. The memory mechanism is used to introduce a proxy of trust in the model. The key idea is that a lender, having lent many times to a borrower in the past, is more likely to lend to that borrower again in the future than to other borrowers, with which the lender has never (or has in- frequently) interacted. The core of the model depends on only one parameter representing the initial attractiveness of all the banks as borrowers. Model outcomes and real data are compared through a variety of measures that describe the structure and properties of trading networks, including number of statistically validated links, bidirectional links, and 3-motifs. Refinements of the pairing method are also proposed, in order to capture finite memory and reciprocity in the model. The model is implemented within the Mason framework in Java.
We study an economic model where agents trade a variety of products by using one of three competing rules: need, greed and noise. We find that the optimal strategy for any agent depends on both product composition in the overall market and composition of strategies in the market. In particular, a strategy that does best on pairwise competition may easily do much worse when all are present, leading, in some cases, to a paper, stone, scissors circular hierarchy.
Almost twenty years ago, E.R. Fernholz introduced portfolio generating functions which can be used to construct a variety of portfolios, solely in the terms of the individual companies market weights. I. Karatzas and J. Ruf recently developed another methodology for the functional construction of portfolios, which leads to very simple conditions for strong relative arbitrage with respect to the market. In this paper, both of these notions of functional portfolio generation are generalized in a pathwise, probability-free setting; portfolio generating functions are substituted by path-dependent functionals, which involve the current market weights, as well as additional bounded-variation functions of past and present market weights. This generalization leads to a wider class of functionally-generated portfolios than was heretofore possible, and yields improved conditions for outperforming the market portfolio over suitable time-horizons.
Technical trading rules have a long history of being used by practitioners in financial markets. Their profitable ability and efficiency of technical trading rules are yet controversial. In this paper, we test the performance of more than seven thousands traditional technical trading rules on the Shanghai Securities Composite Index (SSCI) from May 21, 1992 through June 30, 2013 and Shanghai Shenzhen 300 Index (SHSZ 300) from April 8, 2005 through June 30, 2013 to check whether an effective trading strategy could be found by using the performance measurements based on the return and Sharpe ratio. To correct for the influence of the data-snooping effect, we adopt the Superior Predictive Ability test to evaluate if there exists a trading rule that can significantly outperform the benchmark. The result shows that for SSCI, technical trading rules offer significant profitability, while for SHSZ 300, this ability is lost. We further partition the SSCI into two sub-series and find that the efficiency of technical trading in sub-series, which have exactly the same spanning period as that of SHSZ 300, is severely weakened. By testing the trading rules on both indexes with a five-year moving window, we find that the financial bubble from 2005 to 2007 greatly improve the effectiveness of technical trading rules. This is consistent with the predictive ability of technical trading rules which appears when the market is less efficient.
In this study, we investigate the statistical properties of the returns and the trading volume. We show a typical example of power-law distributions of the return and of the trading volume. Next, we propose an interacting agent model of stock markets inspired from statistical mechanics [24] to explore the empirical findings. We show that as the interaction among the interacting traders strengthens both the returns and the trading volume present power-law behavior.