No Arabic abstract
A Particle Tracking Velocimetry experiment has been performed in a turbulent flow at intermediate Reynolds number. We present experimentally obtained stretching rates for particle pairs in the inertial range. When compensated by a characteristic time scale for coarse-grained strain we observe constant stretching. This indicates that the process of material line stretching taking place in the viscous subrange has its counterpart in the inertial subrange. We investigate both forwards and backwards dispersion. We find a faster backwards stretching and relate it to the problem of relative dispersion and its time asymmetry.
An important class of fluid-structure problems involve the dynamics of ordered arrays of immersed, flexible fibers. While specialized numerical methods have been developed to study fluid-fiber systems, they become infeasible when there are many, rather than a few, fibers present, nor do these methods lend themselves to analytical calculation. Here, we introduce a coarse-grained continuum model, based on local-slender body theory, for elastic fibers immersed in a viscous Newtonian fluid. It takes the form of an anisotropic Brinkman equation whose skeletal drag is coupled to elastic forces. This model has two significant benefits: (1) the density effects of the fibers in a suspension become analytically manifest, and (2) it allows for the rapid simulation of dense suspensions of fibers in regimes inaccessible to standard methods. As a first validation, without fitting parameters, we achieve very reasonable agreement with 3D Immersed Boundary simulations of a bed of anchored fibers bent by a shear flow. Secondly, we characterize the effect of density on the relaxation time of fiber beds under oscillatory shear, and find close agreement to results from full numerical simulations. We then study buckling instabilities in beds of fibers, using our model both numerically and analytically to understand the role of fiber density and the structure of buckling transitions. We next apply our model to study the flow-induced bending of inclined fibers in a channel, as has been recently studied as a flow rectifier, examining the nature of the internal flows within the bed, and the emergence of inhomogeneous permeability. Finally, we extend the method to study a simple model of metachronal waves on beds of actuated fibers, as a model for ciliary beds. Our simulations reproduce qualitatively the pumping action of coordinated waves of compression through the bed.
Systems out of equilibrium exhibit a net production of entropy. We study the dynamics of a stochastic system represented by a Master Equation that can be modeled by a Fokker-Planck equation in a coarse-grained, mesoscopic description. We show that the corresponding coarse-grained entropy production contains information on microscopic currents that are not captured by the Fokker-Planck equation and thus cannot be deduced from it. We study a discrete-state and a continuous-state system, deriving in both the cases an analytical expression for the coarse-graining corrections to the entropy production. This result elucidates the limits in which there is no loss of information in passing from a Master Equation to a Fokker-Planck equation describing the same system. Our results are amenable of experimental verification, which could help to infer some information about the underlying microscopic processes.
The nucleation of cavities in a homogenous polymer under tensile strain is investigated in a coarse-grained molecular dynamics simulation. In order to establish a causal relation between local microstructure and the onset of cavitation, a detailed analysis of some local properties is presented. In contrast to common assumptions, the nucleation of a cavity is neither correlated to a local loss of density nor, to the stress at the atomic scale and nor to the chain ends density in the undeformed state. Instead, a cavity in glassy polymers nucleates in regions that display a low bulk elastic modulus. This criterion allows one to predict the cavity position before the cavitation occurs. Even if the localization of a cavity is not directly predictable from the initial configuration, the elastically weak zones identified in the initial state emerge as favorite spots for cavity formation.
We present an effective evolution equation for a coarse-grained distribution function of a long-range-interacting system preserving the symplectic structure of the non-collisional Boltzmann, or Vlasov, equation. We first derive a general form of such an equation based on symmetry considerations only. Then, we explicitly derive the equation for one-dimensional systems, finding that it has the form predicted on general grounds. Finally, we use such an equation to predict the dependence of the damping times on the coarse-graining scale and numerically check it for some one-dimensional models, including the Hamiltonian Mean Field (HMF) model, a scalar field with quartic interaction, a 1-d self-gravitating system, and the Self-Gravitating Ring (SGR).
The purpose of physics is to describe nature from elementary particles all the way up to cosmological objects like cluster of galaxies and black holes. Although a unified description for all this spectrum of events is desirable, this would be highly impractical. To not get lost in unnecessary details, effective descriptions are mandatory. Here we analyze the dynamics that may emerge from a full quantum description when one does not have access to all the degrees of freedom of a system. More concretely, we describe the properties of the dynamics that arise from quantum mechanics if one has access only to a coarse-grained description of the system. We obtain that the effective maps are not necessarily of Kraus form, due to correlations between accessible and nonaccessible degrees of freedom, and that the distance between two effective states may increase under the action of the effective map. We expect our framework to be useful for addressing questions such as the thermalization of closed quantum systems, as well as the description of measurements in quantum mechanics.