Do you want to publish a course? Click here

Detecting Neutral Atoms on an Atom Chip

307   0   0.0 ( 0 )
 Added by Marco Wilzbach
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Detecting single atoms (qubits) is a key requirement for implementing quantum information processing on an atom chip. The detector should ideally be integrated on the chip. Here we present and compare different methods capable of detecting neutral atoms on an atom chip. After a short introduction to fluorescence and absorption detection we discuss cavity enhanced detection of single atoms. In particular we concentrate on optical fiber based detectors such as fiber cavities and tapered fiber dipole traps. We discuss the various constraints in building such detectors in detail along with the current implementations on atom chips. Results from experimental tests of fiber integration are also described. In addition we present a pilot experiment for atom detection using a concentric cavity to verify the required scaling.



rate research

Read More

Three dimensional electrodynamic trapping of neutral atoms has been demonstrated. By applying time-varying inhomogeneous electric fields with micron-sized electrodes, nearly $10^2$ strontium atoms in the $^1S_0$ state have been trapped with a lifetime of 80 ms. In order to design the electrodes, we numerically analyzed the electric field and simulated atomic trajectories in the trap, which showed reasonable agreement with the experiment.
Optical dipole traps and atom chips are two very powerful tools for the quantum manipulation of neutral atoms. We demonstrate that both methods can be combined by creating an optical lattice potential on an atom chip. A red-detuned laser beam is retro-reflected using the atom chip surface as a high-quality mirror, generating a vertical array of purely optical oblate traps. We load thermal atoms from the chip into the lattice and observe cooling into the two-dimensional regime where the thermal energy is smaller than a quantum of transverse excitation. Using a chip-generated Bose-Einstein condensate, we demonstrate coherent Bloch oscillations in the lattice.
167 - Bo Yan , Feng Cheng , Min Ke 2008
We report an experiment of creating Bose-Einstein condensate (BEC) on an atom chip. The chip based Z-wire current and a homogeneous bias magnetic field create a tight magnetic trap, which allows for a fast production of BEC. After an 4.17s forced radio frequency evaporative cooling, a condensate with about 3000 atoms appears. And the transition temperature is about 300nK. This compact system is quite robust, allowing for versatile extensions and further studying of BEC.
223 - A. Gunther , H. Bender , A. Stibor 2008
We experimentally demonstrate optical spectroscopy of magnetically trapped atoms on an atom chip. High resolution optical spectra of individual trapped clouds are recorded within a few hundred milliseconds. Detection sensitivities close to the single atom level are obtained by photoionization of the excited atoms and subsequent ion detection with a channel electron multiplier. Temperature and decay rates of the trapped atomic cloud can be monitored in real time for several seconds with only little detection losses. The spectrometer can be used for investigations of ultracold atomic mixtures and for the development of interferometric quantum sensors on atom chips.
The coherence of quantum systems is crucial to quantum information processing. While it has been demonstrated that superconducting qubits can process quantum information at microelectronics rates, it remains a challenge to preserve the coherence and therefore the quantum character of the information in these systems. An alternative is to share the tasks between different quantum platforms, e.g. cold atoms storing the quantum information processed by superconducting circuits. In our experiment, we characterize the coherence of superposition states of 87Rb atoms magnetically trapped on a superconducting atom-chip. We load atoms into a persistent-current trap engineered in the vicinity of an off-resonance coplanar resonator, and observe that the coherence of hyperfine ground states is preserved for several seconds. We show that large ensembles of a million of thermal atoms below 350 nK temperature and pure Bose-Einstein condensates with 3.5 x 10^5 atoms can be prepared and manipulated at the superconducting interface. This opens the path towards the rich dynamics of strong collective coupling regimes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا