Do you want to publish a course? Click here

Risk measures with non-Gaussian fluctuations

229   0   0.0 ( 0 )
 Added by Giacomo Bormetti
 Publication date 2006
  fields Physics Financial
and research's language is English




Ask ChatGPT about the research

Reliable calculations of financial risk require that the fat-tailed nature of prices changes is included in risk measures. To this end, a non-Gaussian approach to financial risk management is presented, modeling the power-law tails of the returns distribution in terms of a Student-$t$ (or Tsallis) distribution. Non-Gaussian closed-form solutions for Value-at-Risk and Expected Shortfall are obtained and standard formulae known in the literature under the normality assumption are recovered as a special case. The implications of the approach for risk management are demonstrated through an empirical analysis of financial time series from the Italian stock market. Detailed comparison with the results of the widely used procedures of quantitative finance, such as parametric normal approach, RiskMetrics methodology and historical simulation, as well as with previous findings in the literature, are shown and commented. Particular attention is paid to quantify the size of the errors affecting the risk measures obtained according to different methodologies, by employing a bootstrap technique.



rate research

Read More

In this paper, we study general monetary risk measures (without any convexity or weak convexity). A monetary (respectively, positively homogeneous) risk measure can be characterized as the lower envelope of a family of convex (respectively, coherent) risk measures. The proof does not depend on but easily leads to the classical representation theorems for convex and coherent risk measures. When the law-invariance and the SSD (second-order stochastic dominance)-consistency are involved, it is not the convexity (respectively, coherence) but the comonotonic convexity (respectively, comonotonic coherence) of risk measures that can be used for such kind of lower envelope characterizations in a unified form. The representation of a law-invariant risk measure in terms of VaR is provided.
We study the Gromov waist in the sense of $t$-neighborhoods for measures in the Euclidean space, motivated by the famous theorem of Gromov about the waist of radially symmetric Gaussian measures. In particular, it turns our possible to extend Gromovs original result to the case of not necessarily radially symmetric Gaussian measure. We also provide examples of measures having no $t$-neighborhood waist property, including a rather wide class of compactly supported radially symmetric measures and their maps into the Euclidean space of dimension at least 2. We use a simpler form of Gromovs pancake argument to produce some estimates of $t$-neighborhoods of (weighted) volume-critical submanifolds in the spirit of the waist theorems, including neighborhoods of algebraic manifolds in the complex projective space. For readers convenience, in one appendix of this paper we provide a more detailed explanation of the Caffarelli theorem that we use to handle not necessarily radially symmetric Gaussian measures. In the other appendix, we provide a comparison of different variations of Gromovs pancake method.
In this paper, we consider the problem of equal risk pricing and hedging in which the fair price of an option is the price that exposes both sides of the contract to the same level of risk. Focusing for the first time on the context where risk is measured according to convex risk measures, we establish that the problem reduces to solving independently the writer and the buyers hedging problem with zero initial capital. By further imposing that the risk measures decompose in a way that satisfies a Markovian property, we provide dynamic programming equations that can be used to solve the hedging problems for both the case of European and American options. All of our results are general enough to accommodate situations where the risk is measured according to a worst-case risk measure as is typically done in robust optimization. Our numerical study illustrates the advantages of equal risk pricing over schemes that only account for a single party, pricing based on quadratic hedging (i.e. $epsilon$-arbitrage pricing), or pricing based on a fixed equivalent martingale measure (i.e. Black-Scholes pricing). In particular, the numerical results confirm that when employing an equal risk price both the writer and the buyer end up being exposed to risks that are more similar and on average smaller than what they would experience with the other approaches.
We propose a method to assess the intrinsic risk carried by a financial position $X$ when the agent faces uncertainty about the pricing rule assigning its present value. Our approach is inspired by a new interpretation of the quasiconvex duality in a Knightian setting, where a family of probability measures replaces the single reference probability and is then applied to value financial positions. Diametrically, our construction of Value&Risk measures is based on the selection of a basket of claims to test the reliability of models. We compare a random payoff $X$ with a given class of derivatives written on $X$ , and use these derivatives to textquotedblleft testtextquotedblright the pricing measures. We further introduce and study a general class of Value&Risk measures $% R(p,X,mathbb{P})$ that describes the additional capital that is required to make $X$ acceptable under a probability $mathbb{P}$ and given the initial price $p$ paid to acquire $X$.
The paper analyzes risk assessment for cash flows in continuous time using the notion of convex risk measures for processes. By combining a decomposition result for optional measures, and a dual representation of a convex risk measure for bounded cd processes, we show that this framework provides a systematic approach to the both issues of model ambiguity, and uncertainty about the time value of money. We also establish a link between risk measures for processes and BSDEs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا