A Cell Dynamical System Model for Simulation of Continuum Dynamics of Turbulent Fluid Flows


Abstract in English

Atmospheric flows exhibit long-range spatiotemporal correlations manifested as the fractal geometry to the global cloud cover pattern concomitant with inverse power-law form for power spectra of temporal fluctuations of all scales ranging from turbulence (millimeters-seconds) to climate (thousands of kilometers-years). Long-range spatiotemporal correlations are ubiquitous to dynamical systems in nature and are identified as signatures of self-organized criticality. Standard models for turbulent fluid flows in meteorological theory cannot explain satisfactorily the observed multifractal (space-time) structures in atmospheric flows. Numerical models for simulation and prediction of atmospheric flows are subject to deterministic chaos and give unrealistic solutions. Deterministic chaos is a direct consequence of round-off error growth in iterative computations. Round-off error of finite precision computations doubles on an average at each step of iterative computations. Round-off error will propagate to the mainstream computation and give unrealistic solutions in numerical weather prediction and climate models which incorporate thousands of iterative computations in long-term numerical integration schemes. A recently developed non-deterministic cell dynamical system model for atmospheric flows predicts the observed self-organized criticality as intrinsic to quantumlike mechanics governing flow dynamics. Further, the fractal space-time structure to the stringlike atmospheric flow trajectory is resolved into a continuum of eddies. The eddy circulations obey Kepler third law of planetary motion and therefore eddy inertial masses obey Newton inverse square law of gravitation on all scales from microscopic to macroscale.

Download