Do you want to publish a course? Click here

In situ evidence for the structure of the magnetic null in a 3D reconnection event in the Earths magnetotail

493   0   0.0 ( 0 )
 Added by Chijie Xiao
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic reconnection is one of the most important processes in astrophysical, space and laboratory plasmas. Identifying the structure around the point at which the magnetic field lines break and subsequently reform, known as the magnetic null point, is crucial to improving our understanding reconnection. But owing to the inherently three-dimensional nature of this process, magnetic nulls are only detectable through measurements obtained simultaneously from at least four points in space. Using data collected by the four spacecraft of the Cluster constellation as they traversed a diffusion region in the Earths magnetotail on 15 September, 2001, we report here the first in situ evidence for the structure of an isolated magnetic null. The results indicate that it has a positive-spiral structure whose spatial extent is of the same order as the local ion inertial length scale, suggesting that the Hall effect could play an important role in 3D reconnection dynamics.



rate research

Read More

Magnetic reconnection is a fundamental process in solar system and astrophysical plasmas, through which stored magnetic energy associated with current sheets is converted into thermal, kinetic and wave energy. Magnetic reconnection is also thought to be a key process involved in shedding internally produced plasma from the giant magnetospheres at Jupiter and Saturn through topological reconfiguration of the magnetic field. The region where magnetic fields reconnect is known as the diffusion region and in this letter we report on the first encounter of the Cassini spacecraft with a diffusion region in Saturns magnetotail. The data also show evidence of magnetic reconnection over a period of 19 h revealing that reconnection can, in fact, act for prolonged intervals in a rapidly rotating magnetosphere. We show that reconnection can be a significant pathway for internal plasma loss at Saturn. This counters the view of reconnection as a transient method of internal plasma loss at Saturn. These results, although directly relating to the magnetosphere of Saturn, have applications in the understanding of other rapidly rotating magnetospheres, including that of Jupiter and other astrophysical bodies.
130 - Seiji Zenitani , Iku Shinohara , 2012
Signatures of the dissipation region of collisionless magnetic reconnection are investigated by the Geotail spacecraft for the 15 May 2003 event. The energy dissipation in the rest frame of the electrons bulk flow is considered in an approximate form D*_e, which is validated by a particle-in-cell simulation. The dissipation measure is directly evaluated from the {plasma moments}, the electric field, and the magnetic field. Using D*_e, a compact dissipation region is successfully detected in the vicinity of the possible X-point in Geotail data. The dissipation rate is 45 pWm**{-3}. The length of the dissipation region is estimated to 1--2 local ion inertial length. The Lorentz work W, the work rate by Lorentz force to plasmas, is also introduced. It is positive over the reconnection region and it has a peak around the pileup region away from the X-point. These new measures D*_e and W provide useful information to understand the reconnection structure.
150 - Z. Voros , M.P. Leubner , A. Runov 2009
Magnetic reconnection (MR) in Earths magnetotail is usually followed by a systemwide redistribution of explosively released kinetic and thermal energy. Recently, multispacecraft observations from the THEMIS mission were used to study localized explosions associated with MR in the magnetotail so as to understand subsequent Earthward propagation of MR outbursts during substorms. Here we investigate plasma and magnetic field fluctuations/structures associated with MR exhaust and ion-ion kink mode instability during a well documented MR event. Generation, evolution and fading of kinklike oscillations are followed over a distance of 70 000 km from the reconnection site in the midmagnetotail to the more dipolar region near the Earth. We have found that the kink oscillations driven by different ion populations within the outflow region can be at least 25 000 km from the reconnection site.
We report in situ observations of an electron diffusion region (EDR) and adjacent separatrix region. We observe significant magnetic field oscillations near the lower hybrid frequency which propagate perpendicularly to the reconnection plane. We also find that the strong electron-scale gradients close to the EDR exhibit significant oscillations at a similar frequency. Such oscillations are not expected for a crossing of a steady 2D EDR, and can be explained by a complex motion of the reconnection plane induced by current sheet kinking propagating in the out-of-reconnection-plane direction. Thus all three spatial dimensions have to be taken into account to explain the observed perturbed EDR crossing.
The reversibility of the transfer of energy from the magnetic field to the surrounding plasma during magnetic reconnection is examined. Trajectories of test particles in an analytic model of the fields demonstrate that irreversibility is associated with separatrix crossings and regions of weaker magnetic field. Inclusion of a guide field increases the degree of reversibility. Full kinetic simulations with a particle-in-cell code support these results and demonstrate that while time-reversed simulations at first un-reconnect, they eventually evolve into a reconnecting state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا