Do you want to publish a course? Click here

Two-Color Fabry-Perot Laser Diode with THz Primary Mode Spacing

80   0   0.0 ( 0 )
 Added by Stephen O'Brien
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

A class of multiwavelength Fabry-Perot lasers is introduced where the spectrum is tailored through a non-periodic patterning of the cavity effective index. The cavity geometry is obtained using an inverse scattering approach and can be designed such that the spacing of discrete Fabry-Perot lasing modes is limited only by the bandwidth of the inverted gain medium. A specific two-color semiconductor laser with a mode spacing in the THz regime is designed, and measurements are presented demonstrating the simultaneous oscillation of the two wavelengths. The extension of the Fabry-Perot laser concept described presents significant new possibilities in laser cavity design.



rate research

Read More

217 - D. Bitauld , S. Osborne , 2010
We demonstrate passive harmonic mode-locking of a quantum well laser diode designed to support a discrete comb of Fabry-Perot modes. Spectral filtering of the mode spectrum was achieved using a non-periodic patterning of the cavity effective index. By selecting six modes spaced at twice the fundamental mode spacing, near-transform limited pulsed output with 2 ps pulse duration was obtained at a repetition rate of 100 GHz.
We propose a novel photonic structure composed of metal nanolayer, Bragg mirror and metal nanolayer. The structure supports resonances that are transitional between Fabry-Perot and Tamm modes. When the dielectric contrast of the DBR is removed these modes are a pair of conventional Fabry-Perot resonances. They spectrally merge into a Tamm mode at high contrast. Such behavior differs from the results for structures supporting Tamm modes reported earlier. The optical properties of the structure in the frequency range of the DBR stop band, including highly beneficial 50% transmittivity through thick structures, are determined by the introduced in the paper hybrid resonances. The results can find a wide range of photonic applications.
We report on measurements and modeling of the mode structure of tunable Fabry-Perot optical microcavities with imperfect mirrors. We find that non-spherical mirror shape and finite mirror size lead to loss, mode deformation, and shifted resonance frequencies at particular mirror separations. For small mirror diameters, the useful cavity length is limited to values significantly below the expected stability range. We explain the observations by resonant coupling between different transverse modes of the cavity and mode-dependent diffraction loss. A model based on resonant state expansion that takes into account the measured mirror profile can reproduce the measurements and identify the parameter regime where detrimental effects of mode mixing are avoided.
While nanoscale color generations have been studied for years, high performance transmission structural colors, simultaneously equipped with large gamut, high resolution, low loss and optical multiplexing abilities, still remain as a hanging issue. Here, beneficial from metasurfaces, we demonstrate a silicon metasurface embedded Fabry-Perot cavity (meta-FP cavity), with polydimethylsiloxanes (PDMS) surrounding media and silver film mirrors. By changing the planar geometries of the embedded nanopillars, the meta-FP cavity provides transmission colors with ultra large gamut of 194% sRGB and ultrahigh resolution of 141111 DPI, along with considerably average transmittance of 43% and more than 300% enhanced angular tolerance. Such high density allows two-dimensional color mixing at diffraction limit scale. The color gamut and the resolution can be flexibly tuned and improved by modifying the silver film thickness and the lattice period. The polarization manipulation ability of the metasurface also enables arbitrary color arrangement between cyan and red for two orthogonal linear polarization states, at deep subwavelength scale. Our proposed cavities can be used in filters, printings, optical storages and many other applications in need of high quality and density colors.
We demonstrate the optical coupling of two cavities without light transmission through a substrate. Compared to a conventional coupling component, that is a partially transmissive mirror, an all-reflective coupler avoids light absorption in the substrate and therefore associated thermal problems, and even allows the use of opaque materials with possibly favourable mechanical and thermal properties. Recently, the all-reflective coupling of two cavities with a low-efficiency 3-port diffraction grating was theoretically investigated. Such a grating has an additional (a third) port. However, it was shown that the additional port does not necessarily decrease the bandwidth of the coupled cavities. Such an all-reflective scheme for cavity coupling is of interest in the field of gravitational wave detection. In such detectors light that is resonantly enhanced inside the so-called power-recycling cavity is coupled to (kilometre-scale) Fabry-Perot resonators representing the arms of a Michelson interferometer. In order to achieve a high sensitivity over a broad spectrum, the Fabry-Perot resonators need to have a high bandwidth for a given (high) power build-up. We realized such an all-reflective coupling in a table-top experiment. Our findings are in full agreement with the theoretical model incorporating the characteristics of the 3-port grating used, and therefore encourage the application of all-reflective cavity couplers in future gravitational wave detectors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا