Do you want to publish a course? Click here

Phase transition in ultrathin magnetic films with long range interactions

72   0   0.0 ( 0 )
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ultrathin magnetic films can be modeled as an anisotropic Heisenberg model with long range dipolar interactions. It is believed that the phase diagram presents three phases: A ordered ferromagnetic phase (I), a phase characterized by a change from out-of-plane to in-plane in the magnetization (II), and a high temperature paramagnetic phase (III). It is claimed that the border lines from phase I to III and II to III are of second order and from I to II is first order. In the present work we have performed a very careful Monte Carlo simulation of the model. Our results strongly support that the line separating phase II and III is of the BKT type.

rate research

Read More

118 - M. Rapini , R. A. Dias , 2010
Ultrathin magnetic films can be modeled as an anisotropic Heisenberg model with long-range dipolar interactions. It is believed that the phase diagram presents three phases: An ordered ferromagnetic phase I, a phase characterized by a change from out-of-plane to in-plane in the magnetization II, and a high-temperature paramagnetic phase III. It is claimed that the border lines from phase I to III and II to III are of second order and from I to II is first order. In the present work we have performed a very careful Monte Carlo simulation of the model. Our results strongly support that the line separating phases II and III is of the BKT type.
Using state of the art Hybrid-Monte-Carlo (HMC) simulations we carry out an unbiased study of the competition between spin-density wave (SDW) and charge-density wave (CDW) order in suspended graphene. We determine that the realistic inter-electron potential of graphene must be scaled up by a factor of roughly 1.6 to induce a semimetal-SDW phase transition and find no evidence for CDW order. A study of critical properties suggests that the universality class of the three-dimensional chiral Heisenberg Gross-Neveu model with two fermion flavors, predicted by renormalization group studies and strong-coupling expansion, is unlikely to apply to this transition. We propose that our results instead favor an interpretation in terms of a conformal phase transition. In addition, we describe a variant of the HMC algorithm which uses exact fermionic forces during molecular dynamics trajectories and avoids the use of pseudofermions. Compared to standard HMC this allows for a substantial increase of the integrator stepsize while achieving comparable Metropolis acceptance rates and leads to a sizable performance improvement.
137 - L. A. S. Mol , B. V. Costa 2013
In this work we have used extensive Monte Carlo calculations to study the planar to paramagnetic phase transition in the two-dimensional anisotropic Heisenberg model with dipolar interactions (AHd) considering the true long-range character of the dipolar interactions by means of the Ewald summation. Our results are consistent with an order-disorder phase transition with unusual critical exponents in agreement with our previous results for the Planar Rotator model with dipolar interactions. Nevertheless, our results disagrees with the Renormalization Group results of Maier and Schwabl [PRB, 70, 134430 (2004)] and the results of Rapini et. al. [PRB, 75, 014425 (2007)], where the AHd was studied using a cut-off in the evaluation of the dipolar interactions. We argue that besides the long-range character of dipolar interactions their anisotropic character may have a deeper effect in the system than previously believed. Besides, our results shows that the use of a cut-off radius in the evaluation of dipolar interactions must be avoided when analyzing the critical behavior of magnetic systems, since it may lead to erroneous results.
112 - Y. Noat , T. Cren , C. Brun 2012
Using scanning tunneling spectroscopy (STS), we address the problem of the superconductor-insulator phase transition (SIT) in homogeneously disordered ultrathin (2-15 nm) films of NbN. Samples thicker than 8 nm, for which the Ioffe-Regel parameter $k_F l geq 5.6$, manifest a conventional superconductivity : A spatially homogeneous BCS-like gap, vanishing at the critical temperature, and a vortex lattice in magnetic field. Upon thickness reduction, however, while $k_F l$ lowers, the STS revealed striking deviations from the BCS scenario, among which a progressive decrease of the coherence peak height and spatial inhomogeneities. The thinnest film (2.16 nm), while not being exactly at the SIT ($T_C approx 0.4 T_{C-bulk}$), showed astonishingly vanishing coherence peaks and the absence of vortices. In the quasi-2D limit, such clear signatures of the loss of long-range phase coherence strongly suggest that, at the SIT the superconductivity is destroyed by phase fluctuations.
We study - experimentally, theoretically, and numerically - nonlinear excitations in lattices of magnets with long-range interactions. We examine breather solutions, which are spatially localized and periodic in time, in a chain with algebraically-decaying interactions. It was established two decades ago [S. Flach, Phys. Rev. E 58, R4116 (1998)] that lattices with long-range interactions can have breather solutions in which the spatial decay of the tails has a crossover from exponential to algebraic decay. In this Letter, we revisit this problem in the setting of a chain of repelling magnets with a mass defect and verify, both numerically and experimentally, the existence of breathers with such a crossover.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا