Do you want to publish a course? Click here

Mode coupling control in a resonant device: application to solid-state ring lasers

149   0   0.0 ( 0 )
 Added by Sylvain Schwartz
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

A theoretical and experimental investigation of the effects of mode coupling in a resonant macro- scopic quantum device is achieved in the case of a ring laser. In particular, we show both analytically and experimentally that such a device can be used as a rotation sensor provided the effects of mode coupling are controlled, for example through the use of an additional coupling. A possible general- ization of this example to the case of another resonant macroscopic quantum device is discussed.

rate research

Read More

We report experimental and theoretical study of a rotating diode-pumped Nd-YAG ring laser with active beat note stabilization. Our experimental setup is described in the usual Maxwell-Bloch formalism. We analytically derive a stability condition and some frequency response characteristics for the solid-state ring laser gyroscope, illustrating the important role of mode coupling effects on the dynamics of such a device. Experimental data are presented and compared with the theory on the basis of realistic laser parameters, showing a very good agreement. Our results illustrate the duality between the very rich non linear dynamics of the diode-pumped solid-state ring laser (including chaotic behavior) and the possibility to obtain a very stable beat note, resulting in a potentially new kind of rotation sensor.
The influence of nonlinear properties of semiconductor saturable absorbers on ultrashort pulse generation was investigated. It was shown, that linewidth enhancement, quadratic and linear ac Stark effect contribute essentially to the mode locking in cw solid-state lasers, that can increase the pulse stability, decrease pulse duration and reduce the mode locking threshold
235 - Sylvain Schwartz 2007
We study in this Letter the dynamical effects of the limited bandwidth of the control electronics in a solid-state (Nd-YAG) ring laser gyroscope. We derive a stability condition for the rotation-sensing regime in the case of a first-order control loop, showing that the smallest measurable rotation speed depends directly on the cutoff frequency value. Our experimental measurements are in good agreement with this prediction.
Laser brightness is a measure of the ability to de- liver intense light to a target, and encapsulates both the energy content and the beam quality. High brightness lasers requires that both parameters be maximised, yet standard laser cavities do not allow this. For example, in solid-state lasers multimode beams have a high energy content but low beam quality, while Gaussian modes have a small mode volume and hence low energy extraction, but in a good quality mode. Here we over- come this fundamental limitation and demonstrate an optimal approach to realising high brightness lasers. We employ intra- cavity beam shaping to produce a Gaussian mode that carries all the energy of the multimode beam, thus energy extraction and beam quality are simultaneously maximised. This work will have a significant influence on the design of future high brightness laser cavities.
In this article we review recent theoretical and experimental developments on multilongitudinal-mode emission in ring cavity lasers, paying special attention to class B lasers. We consider both homogeneously and inhomogeneously broadened amplifying media as well as the limits of small and large cavity losses (i.e., we treat cases within and outside the uniform field limit approximation). In particular we discuss up to what extent the experimental observations of self-mode locking in erbium-doped fiber lasers carried out in recent years are a manifestation of the Risken-Nummedal-Graham-Haken instability.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا