No Arabic abstract
In this paper we propose a new concept for streamer quenching in Resistive Plate Chambers (RPCs). In our approach, the multiplication process is quenched by the appropriate design of a mechanical structure inserted between the two resistive electrodes. We show that stable performance is achieved with binary gas mixtures based on argon and a small fraction of isobutane. Fluorocarbons, deemed responsible for the degradation of the electrode inner surface of RPC detectors, are thus fully eliminated from the gas mixture. This design {also resulted} in a simplified assembly procedure. Preliminary results obtained with a few prototypes of ``Mechanically Quenched RPCs and some prospects for future developments are discussed.
A new kind of Multi-gap Resistive Plate Chamber (MRPC) has been built for the large-area Muon Telescope Detector (MTD) for the STAR experiment at RHIC. These long read-out strip MRPCs (LMRPCs) have an active area of 87.0 x 17.0 cm2 and ten 250 um-thick gas gaps arranged as a double stack. Each read-out strip is 2.5 cm wide and 90 cm long. The signals are read-out at both ends of each strip. Cosmic ray tests indicate a time resolution of ~70 ps and a detection efficiency of greater than 95%. Beam tests performed at T963 at Fermilab indicate a time resolution of 60-70 ps and a spatial resolution of ~1 cm along the strip direction.
The DHCAL, the Digital Hadron Calorimeter, is a prototype calorimeter based on Resistive Plate Chambers (RPCs). The design emphasizes the imaging capabilities of the detector in an effort to optimize the calorimeter for the application of Particle Flow Algorithms (PFAs) to the reconstruction of hadronic jet energies in a colliding beam environment. The readout of the chambers is segmented into 1 x 1 cm2 pads, each read out with a 1-bit (single threshold) resolution. The prototype with approximately 500,000 readout channels underwent extensive testing in both the Fermilab and CERN test beams. This talk presents preliminary findings from the analysis of data collected at the test beams.
The Resistive Plate Chamber (RPC) muon subsystem contributes significantly to the formation of the trigger decision and reconstruction of the muon trajectory parameters. Simulation of the RPC response is a crucial part of the entire CMS Monte Carlo software and directly influences the final physical results. An algorithm based on the parametrization of RPC efficiency, noise, cluster size and timing for every strip has been developed. Experimental data obtained from cosmic and proton-proton collisions at $sqrt{s}=7$ TeV have been used for determination of the parameters. A dedicated validation procedure has been developed. A good agreement between the simulated and experimental data has been achieved.
A novel design of Resistive Plate Chambers (RPCs), using only a single resistive plate, is being proposed. Based on this design, two large size prototype chambers were constructed and were tested with cosmic rays and in particle beams. The tests confirmed the viability of this new approach. In addition to showing an improved single-particle response compared to the traditional 2-plate design, the novel chambers also prove to be suitable for calorimetric applications.
This paper reports on detailed measurements of the performance of Resistive Plate Chambers in a proton beam with variable intensity. Short term effects, such as dead time, are studied using consecutive events. On larger time scales, for various beam intensities the chamber.s efficiency is studied as a function of time within a spill of particles. The correlation between the efficiency of chambers placed in the same beam provides an indication of the lateral size of the observed effects. The measurements are compared to the predictions of a simple model based on the assumption that the resistive plates behave as pure resistors.