Do you want to publish a course? Click here

Status of the ATF extraction line laser-wire

84   0   0.0 ( 0 )
 Added by Nicolas Delerue
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

A new laser-wire is being installed in the extraction line of the ATF at KEK. This device aims at demonstrating that laser-wires can be used to measure micrometre scale beam size.



rate research

Read More

We have experimentally demonstrated the first non-intrusive 1-GeV proton beam extraction for the generation of muons with a temporal structure optimized for Muon Spin Relaxation/Rotation/Resonance (MuSR) applications. The proton pulses are extracted based on the laser neutralization of 1 GeV hydrogen ion (H-) beam in the high energy beam transport of the Spallation Neutron Source (SNS) accelerator. The maximum flux of the extracted proton beam accounts for only 0.2% of the total proton beam used for neutron production, a marked difference from the 20% reduction at other co-located muon and neutron facilities, and thus the proposed method will result in negligible impact on the SNS operation. This paper describes the development of a fiber/solid-state hybrid laser system that has high flexibility of pulse structure and output power, initial experiments on laser neutralization of H- beam and separation of H0 beam from the existing SNS accelerator beam line, conversion of H0 to proton at the SNS linac dump, and measurement results of 30 ns/50 kHz proton pulses. This system conclusively demonstrates the feasibility of laser-based proton beam extraction to power a world-leading MuSR facility at the SNS.
The measurement of properties of exotic nuclei, essential for fundamental nuclear physics, now confronts a formidable challenge for contemporary radiofrequency accelerator technology. A promising option can be found in the combination of state-of-the-art high-intensity short pulse laser system and nuclear measurement techniques. We propose a novel Laser-driven Exotic Nuclei extraction-acceleration method (LENex): a femtosecond petawatt laser, irradiating a target bombarded by an external ion beam, extracts from the target and accelerates to few GeV highly-charged nuclear reaction products. Here a proof-of-principle experiment of LENex is presented: a few hundred-terawatt laser focused onto an aluminum foil, with a small amount of iron simulating nuclear reaction products, extracts almost fully stripped iron nuclei and accelerate them up to 0.9 GeV. Our experiments and numerical simulations show that short-lived, heavy exotic nuclei, with a much larger charge-to-mass ratio than in conventional technology, can be obtained in the form of an energetic, low-emittance, high-current beam.
The wire scanners are used for a measurement of the very small beam size and the emittance in Accelerator Test Facility (ATF). They are installed in the extraction beam line of ATF damping ring. The extracted beam emittance are ex=1.3x10-9 m.rad, ey=1.7x10-11 m.rad with 2x109 electrons/bunch intensity and 1.3GeV energy. The wire scanners scan the beam by a tungsten wire with beam repetition 0.78Hz. The scanning speed is, however, very slow(~500um/sec). Since the extracted beam is quite stable by using the double kicker system, precision of the size measurement is less than 2um for 50 - 150um horizontal beam size and 0.3um for 8 - 16um vertical beam size. The detail of the system and the performance are described.
111 - M. Alves , C. Arnault , D. Auguste 2012
LAL is now equiped with its own platform for photoinjectors tests and Research and Developement, named PHIL (PHotoInjectors at LAL). This facility has two main purposes: push the limits of the photoinjectors performances working on both the design and the associated technology and provide a low energy (MeV) short pulses (ps) electron beam for the interested users. Another very important goal of this machine will be to provide an opportunity to form accelerator physics students, working in a high technology environment. To achieve this goal a test line was realised equipped with an RF source, magnets and beam diagnostics. In this article we will desrcibe the PHIL beamline and its characteristics together with the description of the first two photoinjector realised in LAL and tested: the ALPHAX and the PHIN RF Guns.
X-ray Free Electron Lasers (XFELs) have been proven to generate short and powerful radiation pulses allowing for a wide class of novel experiments. If an XFEL facility supports the generation of two X-ray pulses with different wavelengths and controllable delay, the range of possible experiments is broadened even further to include X-ray-pump/X-ray-probe applications. In this work we discuss the possibility of applying a simple and cost-effective method for producing two-color pulses at the SASE3 soft X-ray beamline of the European XFEL. The technique is based on the installation of a magnetic chicane in the baseline undulator and can be accomplished in several steps. We discuss the scientific interest of this upgrade for the Small Quantum Systems (SQS) instrument, in connection with the high-repetition rate of the European XFEL, and we provide start-to-end simulations up to the radiation focus on the sample, proving the feasibility of our concept.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا